Rigidity theorem for integral pinched shrinking Ricci solitons

被引:10
|
作者
Fu, Hai-Ping [1 ]
Xiao, Li-Qun [2 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
[2] Nanchang Univ, Dept Management Sci & Engn, Nanchang 330031, Jiangxi, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2017年 / 183卷 / 03期
关键词
Einstein manifold; Ricci soliton; Weyl curvature tensor; Yamabe constant;
D O I
10.1007/s00605-017-1042-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that an n-dimensional, n >= 4, compact gradient shrinking Ricci soliton satisfying a L-n/2 -pinching condition is isometric to a quotient of the round Sn, which improves the rigidity theorem given by Catino (Integral pinched shrinking Ricci solitons, 2016), in dimension 4 <= n <= 6.
引用
收藏
页码:487 / 494
页数:8
相关论文
共 50 条