An entropy-based persistence barcode

被引:50
|
作者
Chintakunta, Harish [1 ]
Gentimis, Thanos [1 ]
Gonzalez-Diaz, Rocio [2 ]
Jimenez, Maria-Jose [2 ]
Krim, Hamid [1 ]
机构
[1] NCSU, ECE Dept, Raleigh, NC USA
[2] Univ Seville, Sch Comp Engn, Dept Appl Math, Seville, Spain
关键词
Persistent homology; Persistence barcodes; Hasse diagram; Simplicial complexes; Entropy; Filtration; Filter; DISCRETE MORSE FUNCTIONS; COMPLEXES; TOPOLOGY;
D O I
10.1016/j.patcog.2014.06.023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In persistent homology, the persistence barcode encodes pairs of simplices meaning birth and death of homology classes. Persistence barcodes depend on the ordering of the simplices (called a filter) of the given simplicial complex. In this paper, we define the notion of "minimal" barcodes in terms of entropy. Starting from a given filtration of a simplicial complex K, an algorithm for computing a "proper" filter (a total ordering of the simplices preserving the partial ordering imposed by the filtration as well as achieving a persistence barcode with small entropy) is detailed, by way of computation, and subsequent modification, of maximum matchings on subgraphs of the Hasse diagram associated to K. Examples demonstrating the utility of computing such a proper ordering on the simplices are given. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:391 / 401
页数:11
相关论文
共 50 条
  • [41] Rotation Entropy-Based Vortex Identification
    Wang, Huai-Hui
    Li, Si-Kun
    Zeng, Liang
    [J]. 2014 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND VISUALIZATION (ICVRV2014), 2014, : 302 - 307
  • [42] Framework for entropy-based map evaluation
    Bjorke, Jan T.
    [J]. Cartography and Geographic Information Systems, 1996, 23 (02): : 78 - 95
  • [43] Entropy-based transform learning algorithms
    Parthasarathy, Gayatri
    Abhilash, G.
    [J]. IET SIGNAL PROCESSING, 2018, 12 (04) : 439 - 446
  • [44] Entropy-based concept shift detection
    Vorburger, Peter
    Bernstein, Abraham
    [J]. ICDM 2006: SIXTH INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2006, : 1113 - +
  • [45] Entropy-based Network Anomaly Detection
    Callegari, Christian
    Giordano, Stefano
    Pagano, Michele
    [J]. 2017 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2016, : 334 - 340
  • [46] Entropy-Based Bounds for Online Algorithms
    Pandurangan, Gopal
    Upfal, Eli
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2007, 3 (01)
  • [47] An entropy-based approach for shape description
    Bruni, Vittoria
    Della Cioppa, Lorenzo
    Vitulano, Domenico
    [J]. 2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 603 - 607
  • [48] Entropy-based reduction of traffic data
    Pescape, Antonio
    [J]. IEEE COMMUNICATIONS LETTERS, 2007, 11 (02) : 191 - 193
  • [49] An entropy-based framework for database inference
    Moskowitz, IS
    Chang, LW
    [J]. INFORMATION HIDING, PROCEEDINGS, 2000, 1768 : 405 - 418
  • [50] Entropy-based dark frame subtraction
    Goesele, M
    Heidrich, W
    Seidel, HP
    [J]. PICS 2001: IMAGE PROCESSING, IMAGE QUALITY, IMAGE CAPTURE, SYSTEMS CONFERENCE, PROCEEDINGS, 2001, : 293 - 298