Ricci-flat Kahler metrics on crepant resolutions of Kahler cones

被引:34
|
作者
van Coevering, Craig [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Calabi-Yau manifold; Sasaki manifold; Einstein metric; Ricci-flat manifold; Toric varieties; SASAKI-EINSTEIN METRICS; MANIFOLDS; CONSTRUCTION;
D O I
10.1007/s00208-009-0446-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a crepant resolution pi : Y -> X of a Ricci-flat Kahler cone X admits a complete Ricci-flat Kahler metric asymptotic to the cone metric in every Kahler class in H-c(2) (Y, R). A Kahler cone (X, (g) over bar) is a metric cone over a Sasaki manifold (S, g), i.e. X = C(S) := S x R->0 with (g) over bar = dr(2) + r(2)g, and (X, (g) over bar ) is Ricci-flat precisely when (S, g) Einstein of positive scalar curvature. This result contains as a subset the existence of ALE Ricci-flat Kahler metrics on crepant resolutions pi : Y -> X = C-n/Gamma, with Gamma subset of SL(n, C), due to P. Kronheimer (n = 2) and D. Joyce (n > 2). We then consider the case when X = C(S) is toric. It is a result of A. Futaki, H. Ono, and G. Wang that any Gorenstein toric K hler cone admits a Ricci-flat K hler cone metric. It follows that if a toric Kahler cone X = C(S) admits a crepant resolution pi : Y -> X, then Y admits a T-n-invariant Ricci-flat K hler metric asymptotic to the cone metric (X, (g) over bar ) in every K hler class in H-c(2) (Y, R). A crepant resolution, in this context, is a simplicial fan refining the convex polyhedral cone defining X. We then list some examples which are easy to construct using toric geometry.
引用
收藏
页码:581 / 611
页数:31
相关论文
共 50 条
  • [31] COMPLETE RICCI-FLAT KAHLER-MANIFOLDS OF INFINITE TOPOLOGICAL TYPE
    ANDERSON, MT
    KRONHEIMER, PB
    LEBRUN, C
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 125 (04) : 637 - 642
  • [32] Asymptotically conical Ricci-flat Kahler metrics on C2 with cone singularities along a complex curve
    de Borbon, Martin
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 96 : 425 - 454
  • [33] STABILITY OF THE KAHLER-RICCI FLOW IN THE SPACE OF KAHLER METRICS
    Zheng, Kai
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2011, 251 (02) : 469 - 497
  • [34] EXPANDING KAHLER-RICCI SOLITONS COMING OUT OF KAHLER CONES
    Conlon, Ronan J.
    Deruelle, Alix
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 115 (02) : 303 - 365
  • [35] RICCI FLAT KAHLER METRICS ON RANK TWO COMPLEX SYMMETRIC SPACES
    Biquard, Olivier
    Delcroix, Thibaut
    [J]. JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2019, 6 : 163 - 201
  • [36] Some Ricci-flat (α, β)-metrics
    Sevim, Esra Sengelen
    Ulgen, Semail
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (02) : 151 - 157
  • [37] Ricci-flat Douglas (α, β)-metrics
    Tian, Yanfang
    Cheng, Xinyue
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2012, 30 (01) : 20 - 32
  • [38] The Global Sections of Chiral de Rham Complexes on Compact Ricci-Flat Kahler Manifolds
    Song, Bailin
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (01) : 351 - 379
  • [39] The Stability Inequality for Ricci-Flat Cones
    Stuart Hall
    Robert Haslhofer
    Michael Siepmann
    [J]. Journal of Geometric Analysis, 2014, 24 : 472 - 494
  • [40] Supersymmetric nonlinear sigma models on Ricci-flat Kahler manifolds with O(N) symmetry
    Higashijima, K
    Kimura, T
    Nitta, M
    [J]. PHYSICS LETTERS B, 2001, 515 (3-4) : 421 - 425