Quantum Lorentz and braided Poincare groups

被引:1
|
作者
Zakrzewski, S [1 ]
机构
[1] Univ Warsaw, Dept Math Methods Phys, PL-00682 Warsaw, Poland
来源
关键词
D O I
10.1088/0305-4470/31/12/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum Lorentz groups H admitting quantum Minkowski space V are selected. The natural structure of a quantum space G = V x H is introduced, defining a quantum group structure on G only for triangular H (q = 1). We show that it defines a braided quantum group structure on G for \q\ = 1.
引用
收藏
页码:2929 / 2940
页数:12
相关论文
共 50 条
  • [1] BRAIDED FIELD QUANTIZATION FROM QUANTUM POINCARE COVARIANCE
    Lukierski, Jerzy
    Woronowicz, Mariusz
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (16):
  • [2] Braided homology of quantum groups
    Hadfield, Tom
    Kraehmer, Ulrich
    [J]. JOURNAL OF K-THEORY, 2009, 4 (02) : 299 - 332
  • [3] Generalized braided quantum groups
    Mićo Durdević
    [J]. Israel Journal of Mathematics, 1997, 98 : 329 - 348
  • [4] Generalized braided quantum groups
    Durdevic, M
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1997, 98 (1) : 329 - 348
  • [5] Braided groups and quantum groupoids
    Guohua Liu
    Haixing Zhu
    [J]. Acta Mathematica Hungarica, 2012, 135 : 383 - 399
  • [6] Braided groups and quantum groupoids
    Liu, G. H.
    Zhu, H. X.
    [J]. ACTA MATHEMATICA HUNGARICA, 2012, 135 (04) : 383 - 399
  • [7] Quantum and braided diffeomorphism groups
    Majid, S
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 1998, 28 (1-2) : 94 - 128
  • [8] On the classification of quantum Poincare groups
    Podles, P
    Woronowicz, SL
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (01) : 61 - 82
  • [9] Braided Free Orthogonal Quantum Groups
    Meyer, Ralf
    Roy, Sutanu
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (12) : 8890 - 8915
  • [10] Braided quantum SU(2) groups
    Kasprzak, Pawel
    Meyer, Ralf
    Roy, Sutanu
    Woronowicz, Stanislaw Lech
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2016, 10 (04) : 1611 - 1625