Braided quantum SU(2) groups

被引:14
|
作者
Kasprzak, Pawel [1 ]
Meyer, Ralf [2 ]
Roy, Sutanu [3 ]
Woronowicz, Stanislaw Lech [4 ,5 ]
机构
[1] Uniwersytet Warszawski, Wydzial Fizyki, Katedra Metod Matematycznych Fizyki, Pasteura 5, PL-02093 Warsaw, Poland
[2] Georg August Univ Gottingen, Math Inst, Bunsenstr 3-5, D-37073 Gottingen, Germany
[3] Natl Inst Sci Educ & Res Bhubaneswar, HBNI, Sch Math Sci, Jatni 752050, India
[4] Uniwersytet Warszawski, Inst Matematyczny PAN, Pasteura 5, PL-02093 Warsaw, Poland
[5] Uniwersytet Warszawski, Wydzial Fizyki, Katedra Metod Matematycznych Fizyki, Pasteura 5, PL-02093 Warsaw, Poland
关键词
Braided compact quantum group; SUq(2); U-q(2); EXAMPLES;
D O I
10.4171/JNCG/268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a family of q-deformations of SU(2) for complex parameters q not equal 0. For real q, the deformation coincides with Woronowicz' compact quantum SUq(2) group. For q is not an element of R, SUq(2) is only a braided compact quantum group with respect to a certain tensor product functor for C-*- algebras with an action of the circle group.
引用
收藏
页码:1611 / 1625
页数:15
相关论文
共 50 条
  • [1] Podles spheres for the braided quantum SU(2)
    Soltan, Piotr M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 591 (591) : 169 - 204
  • [2] Braided homology of quantum groups
    Hadfield, Tom
    Kraehmer, Ulrich
    [J]. JOURNAL OF K-THEORY, 2009, 4 (02) : 299 - 332
  • [3] Generalized braided quantum groups
    Mićo Durdević
    [J]. Israel Journal of Mathematics, 1997, 98 : 329 - 348
  • [4] Generalized braided quantum groups
    Durdevic, M
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1997, 98 (1) : 329 - 348
  • [5] Braided groups and quantum groupoids
    Guohua Liu
    Haixing Zhu
    [J]. Acta Mathematica Hungarica, 2012, 135 : 383 - 399
  • [6] Braided groups and quantum groupoids
    Liu, G. H.
    Zhu, H. X.
    [J]. ACTA MATHEMATICA HUNGARICA, 2012, 135 (04) : 383 - 399
  • [7] Quantum and braided diffeomorphism groups
    Majid, S
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 1998, 28 (1-2) : 94 - 128
  • [8] Braided Free Orthogonal Quantum Groups
    Meyer, Ralf
    Roy, Sutanu
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (12) : 8890 - 8915
  • [9] Braided bosonization and inhomogeneous quantum groups
    Drabant, B
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1996, 44 (1-2) : 117 - 132
  • [10] Quantum Lorentz and braided Poincare groups
    Zakrzewski, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (12): : 2929 - 2940