Colored trees and noncommutative symmetric functions

被引:0
|
作者
Szczesny, Matt [1 ]
机构
[1] Boston Univ, Dept Math, Boston, MA 02215 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2010年 / 17卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let CRFS denote the category of S-colored rooted forests,and HCRFS denote its Ringel-Hall algebra as introduced in [6]. We construct a homomorphism from a K-0(+) (CRFS)-graded version of the Hopf algebra of non commutative symmetric functions to HCRFS. Dualizing,we obtain a homomorphism from the Connes-Kreimer Hopf algebra to a K-0(+) (CRFS)-graded version of the algebra of quasisymmetric functions. This homomorphism is are finement of one considered by W.Zhao in [9].
引用
收藏
页数:10
相关论文
共 50 条
  • [32] Quasi-symmetric functions, noncommutative symmetric functions, and Hecke algebras at q = 0
    Duchamp, G.
    Krob, D.
    Leclerc, B.
    Thibon, J.-Y.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 322 (02):
  • [33] Noncommutative symmetric functions .2. Transformations of alphabets
    Krob, D
    Leclerc, B
    Thibon, JY
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 1997, 7 (02) : 181 - 264
  • [34] On distinguishing trees by their chromatic symmetric functions
    Martin, Jeremy L.
    Morin, Matthew
    Wagner, Jennifer D.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (02) : 237 - 253
  • [35] Grothendieck bialgebras, Partition lattices, and symmetric functions in noncommutative variables
    Bergeron, N.
    Hohlweg, C.
    Rosas, M.
    Zabrocki, M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [36] Noncommutative symmetric functions V:: A degenerate version of Uq(glN)
    Krob, D
    Thibon, JY
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 1999, 9 (3-4) : 405 - 430
  • [37] Dual bases for noncommutative symmetric and quasi-symmetric functions via monoidal factorization
    Bui, V. C.
    Duchamp, G. H. E.
    Minh, V. Hoang Ngoc
    Kane, L.
    Tollu, C.
    JOURNAL OF SYMBOLIC COMPUTATION, 2016, 75 : 56 - 73
  • [38] Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions
    Novelli, Jean-Christophe
    Thibon, Jean-Yves
    DISCRETE MATHEMATICS, 2010, 310 (24) : 3584 - 3606
  • [39] A class of trees determined by their chromatic symmetric functions
    Wang, Yuzhenni
    Yu, Xingxing
    Zhang, Xiao-Dong
    DISCRETE MATHEMATICS, 2024, 347 (09)
  • [40] On an algorithm for comparing the chromatic symmetric functions of trees
    Heil, S.
    Ji, C.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 75 : 210 - 222