Data compression on board the PLANCK Satellite Low Frequency Instrument:: optimal compression rate

被引:0
|
作者
Gaztañaga, E [1 ]
Barriga, J [1 ]
Romeo, A [1 ]
Fosalba, P [1 ]
Elizalde, E [1 ]
机构
[1] CSIC, Inst Estudis Espacials Catalunya, ES-08034 Barcelona, Spain
关键词
data compression; signal processing; Information Theory;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Data on board the future PLANCK Low Frequency instrument (LFI), to measure the Cosmic Microwave Background (CMB) anisotropies, consist of N differential temperature measurements, expanding a range of values we shall call R. Preliminary studies and telemetry allocation indicate the need of compressing these data by a ratio of c(r) greater than or similar to 10. Here we present a study of entropy for (correlated multi-Gaussian discrete) noise, showing how the optimal compression c(r),(opt), for a linearly discretized data set with N-bits = log(2) N-max bits is given by: C-r similar or equal to N-bits/log(2)(root 2 pi e sigma (e)/Delta), where sigma(e) = (detC)(1/2N) is some effective noise rms given by the covariance matrix C and Delta = R/N-max is the digital resolution. This Delta only needs to be as small as the instrumental white noise RMS: Delta similar or equal to sigma(T) similar or equal to 2mK (the nominal mu K pixel sensitivity will only be achieved after averaging). Within the currently proposed N-bits = 16 representation, a linear analogue to digital convertor (ADC) will allow the digital storage of A large dynamic range of differential temperature R = N(max)Delta accounting for possible instrument drifts and instabilities (which could be reduced by proper on-board calibration). A well calibrated signal will be dominated by thermal (white) noise in the instrument: sigma(e) similar or equal to sigma(T), which could yield large compression rates c(r,opt) similar or equal to 8. This is the maximum lossless compression possible. In practice, point sources and 1/f noise will produce sigma(e) > sigma(T) and c(r,opt) < 8. Thin strategy seems safer than non-linear ADC or data reduction schemes (which could also be used at some stage).
引用
收藏
页码:273 / 279
页数:7
相关论文
共 50 条
  • [31] BEYONDPLANCK I. Global Bayesian analysis of the Planck Low Frequency Instrument data
    Andersen, K. J.
    Aurlien, R.
    Banerji, R.
    Basyrov, A.
    Bersanelli, M.
    Bertocco, S.
    Brilenkov, M.
    Carbone, M.
    Colombo, L. P. L.
    Eriksen, H. K.
    Eskilt, J. R.
    Foss, M. K.
    Franceschet, C.
    Fuskeland, U.
    Galeotta, S.
    Galloway, M.
    Gerakakis, S.
    Gjerlow, E.
    Hensley, B.
    Herman, D.
    Iacobellis, M.
    Ieronymaki, M.
    Ihle, H. T.
    Jewell, J. B.
    Karakci, A.
    Keihaenen, E.
    Keskitalo, R.
    Lunde, J. G. S.
    Maggio, G.
    Maino, D.
    Maris, M.
    Mennella, A.
    Paradiso, S.
    Partridge, B.
    Reinecke, M.
    San, M.
    Stutzer, N. -o.
    Suur-Uski, A. -s.
    Svalheim, T. L.
    Tavagnacco, D.
    Thommesen, H.
    Watts, D. J.
    Wehus, I. K.
    Zacchei, A.
    ASTRONOMY & ASTROPHYSICS, 2023, 675
  • [32] On-board hyperspectral compression and analysis system for the NEMO satellite
    Bowles, J
    Antoniades, J
    Skibo, J
    Daniel, M
    Haas, D
    Grossmann, J
    Baumback, M
    INFRARED SPACEBORNE REMOTE SENSING VI, 1998, 3437 : 20 - 28
  • [33] On-board satellite image compression using reconfigurable FPGAs
    Dawood, AS
    Williams, JA
    Visser, SJ
    2002 IEEE INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT), PROCEEDINGS, 2002, : 306 - 310
  • [34] Optimal prefetching via data compression
    Vitter, JS
    Krishnan, P
    JOURNAL OF THE ACM, 1996, 43 (05) : 771 - 793
  • [35] Generalized massive optimal data compression
    Alsing, Justin
    Wandelt, Benjamin
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 476 (01) : L60 - L64
  • [36] Lossless compression for archiving satellite telemetry data
    Staudinger, P
    Hershey, J
    Grabb, M
    Joshi, N
    Ross, F
    Nowak, T
    2000 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOL 2, 2000, : 299 - 304
  • [37] Low bit rate transform coding for SAR raw data compression
    Pascazio, Vito
    Schirinzi, Gilda
    Buttarello, Ivan D.
    IEEE National Radar Conference - Proceedings, 1999, : 233 - 236
  • [38] Low bit rate transform coding for SAR raw data compression
    Pascazio, V
    Schirinzi, G
    Buttarello, ID
    PROCEEDINGS OF THE 1999 IEEE RADAR CONFERENCE: RADAR INTO THE NEXT MILLENNIUM, 1999, : 233 - 236
  • [39] LOW BIT RATE TELECONFERENCING VIDEO SIGNAL DATA-COMPRESSION
    MANIKOPOULOS, C
    SUN, H
    ANTONIOU, G
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING IV, PTS 1-3, 1989, 1199 : 504 - 513
  • [40] Design of the On-Board Data Compression for the Bolometer Data of LiteBIRD
    Tominaga, Mayu
    Tsujimoto, Masahiro
    Smecher, Graeme
    Ishino, Hirokazu
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2022, 209 (3-4) : 686 - 692