Oscillatory Riemann-Hilbert problems and the corona theorem

被引:10
|
作者
Bastos, MA [1 ]
Karlovich, YI [1 ]
dos Santos, AF [1 ]
机构
[1] Univ Tecn Lisboa, Dept Matemat, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
Riemann-Hilbert problem; corona theorem; generalized (bounded) canonical factorization;
D O I
10.1016/S0022-1236(03)00007-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is devoted to the Riemann-Hilbert problem with matrix coefficient G is an element of [L-infinity(R)](2x2) having det G=1 in Hardy spaces [H-p(+/-)](2), 1<p <=infinity, on half-planes C-+/-. Under the assumption of existence of a non-trivial solution of corresponding homogeneous Riemann-Hilbert problem in [H-infinity(+)](2) we study the solvability of the non-homogeneous Riemann-Hilbert problem in [H-p(+/-)](2), 1<p<infinity, and get criteria for the existence of a generalized canonical factorization and bounded canonical factorization for G as well as explicit formulas for its factors in terms of solutions of two associated corona problems (in C+ and C-). A separation principle for constructing corona solutions from simpler ones is developed and corona solutions for a number of corona problems in H-infinity(+) are obtained. Making use of these results we construct explicitly canonical factorizations for triangular bounded measurable or almost periodic 2 x 2 matrix functions whose diagonal entries do not possess factorizations. Such matrices arise, e.g., in the theory of convolution type equations on finite intervals. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:347 / 397
页数:51
相关论文
共 50 条
  • [21] An approximation for a subclass of the Riemann-Hilbert problems
    Kucerovsky, Dan
    Najafabadi, Amir T. Payandeh
    IMA JOURNAL OF APPLIED MATHEMATICS, 2009, 74 (04) : 533 - 547
  • [22] Schwarz, Riemann, Riemann-Hilbert Problems and Their Connections in Polydomains
    Mohammed, Alip
    PSEUDO-DIFFERENTIAL OPERATORS: COMPLEX ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 205 : 143 - 166
  • [23] Matrix Riemann-Hilbert problems and factorization on Riemann surfaces
    Camara, M. C.
    dos Santos, A. F.
    dos Santos, Pedro F.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (01) : 228 - 254
  • [24] An operator van der Corput estimate arising from oscillatory Riemann-Hilbert problems
    Do, Yen
    Gressman, Philip T.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (12) : 4775 - 4805
  • [25] Lax Equations, Singularities and Riemann-Hilbert Problems
    dos Santos, Antonio F.
    dos Santos, Pedro F.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (03) : 203 - 229
  • [26] RIEMANN-HILBERT PROBLEMS OF DEGENERATE HYPERBOLIC SYSTEM
    Zhongtai Ma
    Annals of Applied Mathematics, 2010, (02) : 200 - 205
  • [27] Riemann-Hilbert problems with lots of discrete spectrum
    Miller, Peter D.
    INTEGRABLE SYSTEMS AND RANDOM MATRICES: IN HONOR OF PERCY DEIFT, 2008, 458 : 163 - 181
  • [28] Riemann-Hilbert problems, Toeplitz operators and ergosurfaces
    Camara, M. Cristina
    Cardoso, Gabriel Lopes
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (06):
  • [29] Riemann-Hilbert Problems for Hurwitz Frobenius Manifolds
    Korotkin, Dmitry
    Shramchenko, Vasilisa
    LETTERS IN MATHEMATICAL PHYSICS, 2011, 96 (1-3) : 109 - 121
  • [30] Riemann-Hilbert problems for multiple orthogonal polynomials
    Van Assche, W
    Geronimo, JS
    Kuijlaars, ABJ
    SPECIAL FUNCTIONS 2000: CURRENT PERSPECTIVE AND FUTURE DIRECTIONS, 2001, 30 : 23 - 59