2D Space-Time Fractional Diffusion on Bounded Domain - Application of the Fractional Sturm-Liouville Theory

被引:0
|
作者
Klimek, Malgorzata [1 ]
机构
[1] Czestochowa Tech Univ, Inst Math, Czestochowa, Poland
关键词
EQUATIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the paper, we construct a weak solution to a 2D space-time fractional diffusion problem in a bounded domain, provided the fractional orders of Riesz derivatives are in the range (1, 2). The spatial differential operator includes a non-symmetric combination of Riesz derivatives and variable diffusivities. In the construction, we apply eigenfunctions of the fractional Sturm-Liouville problem subjected to the mixed boundary conditions. In the main theorem we describe explicitly the unique, real-valued continuous solution to the problem.
引用
收藏
页码:309 / 314
页数:6
相关论文
共 50 条
  • [21] Sturm-Liouville problem and numerical method of fractional diffusion equation on fractals
    Zhang, Wenbiao
    Yi, Ming
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [22] The 2D inviscid Boussinesq equations with fractional diffusion in bounded domain
    Xu, Xiaojing
    Zhong, Yueyuan
    Zhu, Ning
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 69
  • [23] Sturm-Liouville problem and numerical method of fractional diffusion equation on fractals
    Wenbiao Zhang
    Ming Yi
    Advances in Difference Equations, 2016
  • [24] Singular solutions for space-time fractional equations in a bounded domain
    Chan, Hardy
    Gomez-Castro, David
    Vazquez, Juan Luis
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (04):
  • [25] Two classes of conformable fractional Sturm-Liouville problems: Theory and applications
    Mortazaasl, Hamid
    Jodayree Akbarfam, Ali Asghar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 166 - 195
  • [26] Theory and numerical approaches of high order fractional Sturm-Liouville problems
    Houlari, Tahereh
    Dehghan, Mohammad
    Biazar, Jafar
    Nouri, Alireza
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (04) : 1564 - 1579
  • [27] Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation
    Zayernouri, Mohsen
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 252 : 495 - 517
  • [28] Fractional Sturm-Liouville boundary value problems in unbounded domains: Theory and applications
    Khosravian-Arab, Hassan
    Dehghan, Mehdi
    Eslahchi, M. R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 299 : 526 - 560
  • [29] Conformable fractional Sturm-Liouville equation and some existence results on time scales
    Gulsen, Tuba
    Yilmaz, Emrah
    Kemaloglu, Hikmet
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) : 1348 - 1360
  • [30] SPACE-TIME DUALITY FOR FRACTIONAL DIFFUSION
    Baeumer, Boris
    Meerschaert, Mark M.
    Nane, Erkan
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (04) : 1100 - 1115