Granular neural networks for numerical-linguistic data fusion and knowledge discovery

被引:61
|
作者
Zhang, YQ [1 ]
Fraser, MD
Gagliano, RA
Kandel, A
机构
[1] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
[2] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL 33620 USA
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2000年 / 11卷 / 03期
关键词
data compression; data fusion; data mining; distributed KDD; fuzzy logic; granular computing; knowledge discovery; linguistic computing; neural networks; parallel KDD; soft computing;
D O I
10.1109/72.846737
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a neural-networks-based knowledge discovery and data mining (KDDM) methodology based on granular computing, neural computing, fuzzy computing, linguistic computing, and pattern recognition. The major issues include 1) how to make neural networks process both numerical and linguistic data in a data base, 2) how to convert fuzzy linguistic data into related numerical features, 3) how to use neural networks to do numerical-linguistic data fusion. 4) how to use neural networks to discover granular knowledge from numerical-linguistic data bases, and 5) how to use discovered granular knowledge to predict missing data. In order to answer the above concerns, a granular neural network (GNN) is designed to deal with numerical-linguistic data fusion and granular knowledge discovery in numerical-linguistic databases. From a data granulation point of view, the GNN can process granular data in a database. From a data fusion point of view, the GNN makes decisions based on different kinds of granular data. From a KDDM point of view, the GNN is able to learn internal granular relations between numerical-linguistic inputs and outputs, and predict new relations in a database. The GNN is also capable of greatly compressing low-level granular data to high-level granular knowledge with some compression error and a data compression rate. To do KDDM in huge data bases, parallel GNN and distributed GNN will be investigated in the future.
引用
收藏
页码:658 / 667
页数:10
相关论文
共 50 条
  • [31] Distributed prediction and hierarchical knowledge discovery by ARTMAP neural networks
    Carpenter, GA
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS, 2003, 2773 : 1 - 4
  • [32] Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
    Steven A. Hicks
    Jonas L. Isaksen
    Vajira Thambawita
    Jonas Ghouse
    Gustav Ahlberg
    Allan Linneberg
    Niels Grarup
    Inga Strümke
    Christina Ellervik
    Morten Salling Olesen
    Torben Hansen
    Claus Graff
    Niels-Henrik Holstein-Rathlou
    Pål Halvorsen
    Mary M. Maleckar
    Michael A. Riegler
    Jørgen K. Kanters
    Scientific Reports, 11
  • [33] Knowledge discovery in neural networks with application to transformer failure diagnosis
    Castro, ARG
    Miranda, V
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (02) : 717 - 724
  • [34] Selected problems of knowledge discovery using artificial neural networks
    Stuart, Keith Douglas
    Majewski, Maciej
    ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 3, PROCEEDINGS, 2007, 4493 : 1049 - +
  • [35] Explaining deep neural networks for knowledge discovery in electrocardiogram analysis
    Hicks, Steven A.
    Isaksen, Jonas L.
    Thambawita, Vajira
    Ghouse, Jonas
    Ahlberg, Gustav
    Linneberg, Allan
    Grarup, Niels
    Strumke, Inga
    Ellervik, Christina
    Olesen, Morten Salling
    Hansen, Torben
    Graff, Claus
    Holstein-Rathlou, Niels-Henrik
    Halvorsen, Pal
    Maleckar, Mary M.
    Riegler, Michael A.
    Kanters, Jorgen K.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [36] Evolving granular neural networks from fuzzy data streams
    Leite, Daniel
    Costa, Pyramo
    Gomide, Fernando
    NEURAL NETWORKS, 2013, 38 : 1 - 16
  • [37] Development and Analysis of Neural Networks Realized in the Presence of Granular Data
    Zhu, Xiubin
    Pedrycz, Witold
    Li, Zhiwu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (09) : 3606 - 3619
  • [38] Fusion of knowledge-based systems and neural networks and applications
    Khosla, R
    Dillon, T
    FIRST INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED INTELLIGENT ELECTRONIC SYSTEMS, PROCEEDINGS 1997 - KES '97, VOLS 1 AND 2, 1997, : 27 - 44
  • [39] Granular Knowledge Discovery Framework A Case Study of Incident Data Reporting System
    Krasuski, Adam
    Slezak, Dominik
    Krenski, Karol
    Lazowy, Stanislaw
    NEW TRENDS IN DATABASES AND INFORMATION SYSTEMS, 2013, 185 : 109 - +
  • [40] Approaches to the design of classification systems from numerical data and linguistic knowledge
    Ishibuchi, H
    Nii, M
    Nakashima, T
    NEW PARADIGM OF KNOWLEDGE ENGINEERING BY SOFT COMPUTING, 2001, 5 : 241 - 271