Probabilistic Accumulated Irradiance Forecast for Singapore Using Ensemble Techniques

被引:0
|
作者
Aryaputera, Aloysius W. [1 ,2 ]
Verbois, Hadrien [1 ,3 ]
Walsh, Wilfred M. [1 ]
机构
[1] Natl Univ Singapore, SERIS, Singapore 117574, Singapore
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[3] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore
关键词
CALIBRATION; SPREAD;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The performances of Bayesian model averaging (BMA) and ensemble model output statistics (EMOS) in producing intra-day accumulated solar irradiance forecast in tropical Singapore by utilizing global model numerical weather prediction (NWP) outputs are compared. The effect of the predictive probability density function (PDF) choices for the BMA and EMOS methods is investigated as well. The BMA and EMOS methods are shown to be better than climatology and simple bias-corrected ensemble methods. There is, however, no significantly best methods among various variants of the BMA and EMOS, although employing skew-normal conditional predictive PDF for BMA seems to improve the probabilistic forecast calibration. The skew-normal PDF is chosen based on the PDF of the observation data.
引用
收藏
页码:1113 / 1118
页数:6
相关论文
共 50 条
  • [31] Forecast of Solar Irradiance Using Chaos Optimization Neural Networks
    Cao, Shuanghua
    Weng, Wenbing
    Chen, Jianbo
    Liu, Weidong
    Yu, Guoqing
    Cao, Jiacong
    [J]. 2009 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), VOLS 1-7, 2009, : 2246 - +
  • [32] Super-ensemble techniques applied to wave forecast: performance and limitations
    Lenartz, F.
    Beckers, J. -M.
    Chiggiato, J.
    Mourre, B.
    Troupin, C.
    Vandenbulcke, L.
    Rixen, M.
    [J]. OCEAN SCIENCE, 2010, 6 (02) : 595 - 604
  • [33] Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part I: Two-meter temperatures
    Hagedorn, Renate
    Hamill, Thomas M.
    Whitaker, Jeffrey S.
    [J]. MONTHLY WEATHER REVIEW, 2008, 136 (07) : 2608 - 2619
  • [34] Sensitivity of Calibrated Week-2 Probabilistic Forecast Skill to Reforecast Sampling of the NCEP Global Ensemble Forecast System
    Ou, Melissa H.
    Charles, Mike
    Collins, Dan C.
    [J]. WEATHER AND FORECASTING, 2016, 31 (04) : 1093 - 1107
  • [35] Multimodel Ensemble Forecast of Global Horizontal Irradiance at PV Power Stations Based on Dynamic Variable Weight
    袁彬
    申彦波
    邓华
    杨扬
    陈起英
    叶冬
    莫景越
    姚锦烽
    刘宗会
    [J]. Journal of Tropical Meteorology, 2024, 30 (03) : 327 - 336
  • [36] Ensemble model output statistics as a probabilistic site-adaptation tool for solar irradiance: A revisit
    Yang, Dazhi
    [J]. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2020, 12 (03)
  • [37] Multimodel Ensemble Forecast of Global Horizontal Irradiance at PV Power Stations Based on Dynamic Variable Weight
    Yuan, Bin
    Shen, Yan-bo
    Deng, Hua
    Yang, Yang
    Chen, Qi-ying
    Ye, Dong
    Mo, Jing-yue
    Yao, Jin-feng
    [J]. JOURNAL OF TROPICAL METEOROLOGY, 2024, 30 (03) : 327 - 336
  • [38] Ensemble weather forecast post-processing with a flexible probabilistic neural network approach
    Mlakar, Peter
    Merse, Janko
    Pucer, Jana Faganeli
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2024, : 4156 - 4177
  • [39] Master optimization process based on neural networks ensemble for 24-h solar irradiance forecast
    Cornaro, C.
    Pierro, M.
    Bucci, F.
    [J]. SOLAR ENERGY, 2015, 111 : 297 - 312
  • [40] A New Probabilistic Ensemble Method for an Enhanced Day-Ahead PV Power Forecast
    Pretto, Silvia
    Ogliari, Emanuele
    Niccolai, Alessandro
    Nespoli, Alfredo
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2022, 12 (02): : 581 - 588