Probabilistic Accumulated Irradiance Forecast for Singapore Using Ensemble Techniques

被引:0
|
作者
Aryaputera, Aloysius W. [1 ,2 ]
Verbois, Hadrien [1 ,3 ]
Walsh, Wilfred M. [1 ]
机构
[1] Natl Univ Singapore, SERIS, Singapore 117574, Singapore
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[3] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore
关键词
CALIBRATION; SPREAD;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The performances of Bayesian model averaging (BMA) and ensemble model output statistics (EMOS) in producing intra-day accumulated solar irradiance forecast in tropical Singapore by utilizing global model numerical weather prediction (NWP) outputs are compared. The effect of the predictive probability density function (PDF) choices for the BMA and EMOS methods is investigated as well. The BMA and EMOS methods are shown to be better than climatology and simple bias-corrected ensemble methods. There is, however, no significantly best methods among various variants of the BMA and EMOS, although employing skew-normal conditional predictive PDF for BMA seems to improve the probabilistic forecast calibration. The skew-normal PDF is chosen based on the PDF of the observation data.
引用
收藏
页码:1113 / 1118
页数:6
相关论文
共 50 条
  • [1] PREDICTING REGIONAL FORECAST SKILL USING SINGLE AND ENSEMBLE FORECAST TECHNIQUES
    LESLIE, LM
    HOLLAND, GJ
    [J]. MONTHLY WEATHER REVIEW, 1991, 119 (02) : 425 - 435
  • [2] A Probabilistic Approach to Forecast the Uncertainty with Ensemble Spread
    Van Schaeybroeck, Bert
    Vannitsem, Stephane
    [J]. MONTHLY WEATHER REVIEW, 2016, 144 (01) : 451 - 468
  • [3] Probabilistic Ensemble Forecast of Summertime Temperatures in Pakistan
    Hanif, Muhammad
    [J]. ADVANCES IN METEOROLOGY, 2014, 2014
  • [4] Quantile mapping correction of analog ensemble forecast for solar irradiance
    Kakimoto, Mitsuru
    Shiga, Yoshiaki
    Shin, Hiromasa
    Ikeda, Ryosaku
    Kusaka, Hiroyuki
    [J]. SOLAR ENERGY, 2022, 237 : 253 - 263
  • [5] Regional Solar Irradiance Forecast for Kanto Region by Support Vector Regression Using Forecast of Meso-Ensemble Prediction System
    Takamatsu, Takahiro
    Ohtake, Hideaki
    Oozeki, Takashi
    Nakaegawa, Tosiyuki
    Honda, Yuki
    Kazumori, Masahiro
    [J]. ENERGIES, 2021, 14 (11)
  • [6] Probabilistic wind speed forecast for wind power prediction using pseudo ensemble approach
    Al-Yahyai, Sultan
    Gastli, Adel
    Charabi, Yassine
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON POWER AND ENERGY (PECON), 2012, : 127 - 132
  • [7] Probabilistic temperature forecast by using ground station measurements and ECMWF ensemble prediction system
    Boi, P
    [J]. METEOROLOGICAL APPLICATIONS, 2004, 11 (04) : 301 - 309
  • [8] A probabilistic perspective on predictability of solar irradiance using bootstrapped correlograms and ensemble predictability error growth
    Liu, Bai
    Wang, Jingnan
    Chen, Jianfei
    Li, Bing
    Sun, Di
    Zhang, Gang
    [J]. SOLAR ENERGY, 2023, 260 : 17 - 24
  • [9] Wind power generation probabilistic modeling using ensemble learning techniques
    Banik, Rita
    Das, P.
    Ray, S.
    Biswas, Ankur
    [J]. MATERIALS TODAY-PROCEEDINGS, 2020, 26 : 2157 - 2162
  • [10] Generation and evaluation of ensemble simulations of wildfire spread for probabilistic forecast
    Allaire, Frederic
    Filippi, Jean-Baptiste
    Mallet, Vivien
    [J]. ADVANCES IN FOREST FIRE RESEARCH 2018, 2018, : 71 - 80