Time reversibility of stationary regular finite-state Markov chains

被引:10
|
作者
McCausland, William J.
机构
[1] Univ Montreal, Ctr Interuniv Rech Econ Quantitat, Montreal, PQ H3C 3J7, Canada
[2] Univ Montreal, Ctr Interuniv Rech Anal Org, Dept Sci Econ, Montreal, PQ H3C 3J7, Canada
关键词
finite-state Markov chains; time reversibility; Bayesian inference; hidden Markov models; RETAIL PRICE CYCLES;
D O I
10.1016/j.jeconom.2005.09.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose an alternate parameterization of stationary regular finite-state Markov chains, and a decomposition of the parameter into time reversible and time irreversible parts. We demonstrate some useful properties of the decomposition, and propose an index for a certain type of time irreversibility, applicable to chains whose states are naturally ordered. Two empirical examples illustrate the use of the proposed parameter, decomposition and index. One, on gasoline price markups, involves observed states. The other, on U.S. investment growth, features latent states. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:303 / 318
页数:16
相关论文
共 50 条
  • [31] LOGARITHM FUNCTION FOR FINITE-STATE MARKOV SEMIGROUPS
    CUTHBERT, JR
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1973, 6 (MAY): : 524 - 532
  • [32] Finite-state Markov modeling of fading channels
    Sadeghi, Parastoo
    Kennedy, Rodney A.
    Rapajic, Predrag B.
    Shams, Ramtin
    IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (05) : 57 - 80
  • [33] The capacity of finite-state Markov channels with feedback
    Chen, J
    Berger, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (03) : 780 - 798
  • [34] Finite-State Markov Model for the Aeronautical Channel
    Pan, Qunhua
    Liu, Shanjian
    Xu, Ming
    Jia, Changsheng
    2009 5TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-8, 2009, : 2415 - 2418
  • [35] Object tracking by finite-state Markov process
    Dong, Lan
    Schwartz, Stuart C.
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PTS 1-3, PROCEEDINGS, 2007, : 897 - 900
  • [36] Filtering of Finite-State Time-Nonhomogeneous Markov Processes, a Direct Approach
    N. V. Krylov
    A. Zatezalo
    Applied Mathematics & Optimization, 2000, 42 : 229 - 258
  • [37] A MOMENT-MATCHING METHOD FOR APPROXIMATING VECTOR AUTOREGRESSIVE PROCESSES BY FINITE-STATE MARKOV CHAINS
    Gospodinov, Nikolay
    Lkhagvasuren, Damba
    JOURNAL OF APPLIED ECONOMETRICS, 2014, 29 (05) : 843 - 859
  • [38] PROBABILITY BOUNDS IN FINITE-STATE TRANSITION CHAINS
    PIERCE, WH
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1964, 12 (02): : 477 - 486
  • [39] Filtering of finite-state time-nonhomogeneous Markov processes, a direct approach
    Krylov, NV
    Zatezalo, A
    APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 42 (03): : 229 - 258
  • [40] Numerical Computation of Distributions in Finite-State Inhomogeneous Continuous Time Markov Chains, Based on Ergodicity Bounds and Piecewise Constant Approximation
    Satin, Yacov
    Razumchik, Rostislav
    Usov, Ilya
    Zeifman, Alexander
    MATHEMATICS, 2023, 11 (20)