ECOC and Boosting with multi-layer perceptrons

被引:0
|
作者
Hauger, S [1 ]
Windeatt, T [1 ]
机构
[1] Univ Surrey, CVSSP, Guildford GU2 7XH, Surrey, England
关键词
D O I
10.1109/ICPR.2004.1334565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The combination of Boosting and ECOC with multi-layer perceptron base classifiers is experimentally evaluated for a problem in pose classification. While accuracy compared with ECOC is not improved, Boosted ECOC ensembles are less sensitive to tuning parameters.
引用
下载
收藏
页码:458 / 461
页数:4
相关论文
共 50 条
  • [31] Modeling of ventricular repolarisation time series by multi-layer perceptrons
    El Dajani, R
    Miquel, M
    Forlini, MC
    Rubel, P
    ARTIFICIAL INTELLIGENCE IN MEDICINE, PROCEEDINGS, 2001, 2101 : 152 - 155
  • [32] A novel approach for training small-sized multi-layer perceptrons
    Chermakani, DP
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 1999 - 2004
  • [33] Weight quantization for multi-layer perceptrons using soft weight sharing
    Köksal, F
    Alpaydin, E
    Dündar, G
    ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS, 2001, 2130 : 211 - 216
  • [34] Embarrassingly Parallel Independent Training of Multi-Layer Perceptrons with Heterogeneous Architectures
    Farias, Felipe C.
    Ludermir, Teresa B.
    Bastos-Filho, Carmelo J. A.
    AI, 2022, 4 (01) : 16 - 27
  • [35] Discovering stock market trading rules using multi-layer perceptrons
    Lipinski, Piotr
    COMPUTATIONAL AND AMBIENT INTELLIGENCE, 2007, 4507 : 1114 - 1121
  • [36] A rejection model based on multi-layer perceptrons for Mandarin digit recognition
    Lin Zhong
    Jia Liu
    Runsheng Liu
    Journal of Computer Science and Technology, 2002, 17 : 196 - 202
  • [37] On the Parsimony of the Multi-Layer Perceptrons when Processing Encoded Symbolic Variables
    D. Bonnet
    A. Grumbach
    V. Labouisse
    Neural Processing Letters, 1999, 9 : 201 - 201
  • [38] On the parsimony of the multi-layer perceptrons when processing encoded symbolic variables
    Bonnet, D
    Grumbach, A
    Labouisse, V
    NEURAL PROCESSING LETTERS, 1998, 8 (02) : 145 - 153
  • [39] Multi-layer perceptrons for functional data analysis: A projection based approach
    Conan-Guez, B
    Rossi, F
    ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 667 - 672
  • [40] Multi-layer perceptrons with embedded feature selection with application in cancer classification
    Bo Liefeng
    Wang Ling
    Jiao Licheng
    CHINESE JOURNAL OF ELECTRONICS, 2006, 15 (4A): : 832 - 835