Non-commutative functional calculus: Unbounded operators

被引:10
|
作者
Colombo, Fabrizio [1 ]
Gentili, Graziano [2 ]
Sabadini, Irene [1 ]
Struppa, Daniele C. [3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Florence, Dipartimento Matemat, Florence, Italy
[3] Chapman Univ, Dept Math & Comp Sci, Orange, CA 92866 USA
关键词
Functional calculus; Spectral theory; Bounded and unbounded operators; REGULAR FUNCTIONS;
D O I
10.1016/j.geomphys.2009.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent work, Colombo (in press) [1], we developed a functional calculus for bounded operators defined on quaternionic Banach spaces. in this paper we show how the results from the above-mentioned work can be extended to the unbounded case, and we highlight the crucial differences between the two cases. In particular, we deduce a new eigenvalue equation, suitable for the construction of a functional calculus for operators whose spectrum is not necessarily real. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:251 / 259
页数:9
相关论文
共 50 条
  • [1] Non-commutative functional calculus
    Jim Agler
    John E. McCarthy
    [J]. Journal d'Analyse Mathématique, 2019, 137 : 211 - 229
  • [2] Non-commutative functional calculus
    Agler, Jim
    McCarthy, John E.
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2019, 137 (01): : 211 - 229
  • [3] Non Commutative Functional Calculus: Bounded Operators
    Colombo, Fabrizio
    Gentili, Graziano
    Sabadini, Irene
    Struppa, Daniele C.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2010, 4 (04) : 821 - 843
  • [4] Non Commutative Functional Calculus: Bounded Operators
    Fabrizio Colombo
    Graziano Gentili
    Irene Sabadini
    Daniele C. Struppa
    [J]. Complex Analysis and Operator Theory, 2010, 4 : 821 - 843
  • [5] NON-COMMUTATIVE CI OPERATORS
    Eisenbud, David
    Peeva, Irena
    Schreyer, Frank-Olaf
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (07) : 2857 - 2861
  • [6] DERIVATIONS AND NON-COMMUTATIVE DIFFERENTIAL-CALCULUS
    DUBOISVIOLETTE, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (08): : 403 - 408
  • [7] Multiplication operators on non-commutative spaces
    de Jager, P.
    Labuschagne, L. E.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (01) : 874 - 894
  • [8] Domination of operators in the non-commutative setting
    Oikhberg, Timur
    Spinu, Eugeniu
    [J]. STUDIA MATHEMATICA, 2013, 219 (01) : 35 - 67
  • [9] Nonminimal operators and non-commutative residue
    Wang, Jian
    Wang, Yong
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (07)
  • [10] Non-commutative Calculus, Optimal Transport and Functional Inequalities in Dissipative Quantum Systems
    Carlen, Eric A.
    Maas, Jan
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2020, 178 (02) : 319 - 378