Non Commutative Functional Calculus: Bounded Operators

被引:28
|
作者
Colombo, Fabrizio [1 ]
Gentili, Graziano [2 ]
Sabadini, Irene [1 ]
Struppa, Daniele C. [3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Florence, Dipartimento Matemat, Florence, Italy
[3] Chapman Univ, Dept Math & Comp Sci, Orange, CA 92866 USA
关键词
Functional calculus; Spectral theory; Bounded operators; REGULAR FUNCTIONS;
D O I
10.1007/s11785-009-0015-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a functional calculus for bounded operators defined on quaternionic Banach spaces. This calculus is based on the new notion of slice-regularity, see Gentili and Struppa (Acad Sci Paris 342:741-744, 2006) and the key tools are a new resolvent operator and a new eigenvalue problem.
引用
收藏
页码:821 / 843
页数:23
相关论文
共 50 条
  • [1] Non Commutative Functional Calculus: Bounded Operators
    Fabrizio Colombo
    Graziano Gentili
    Irene Sabadini
    Daniele C. Struppa
    [J]. Complex Analysis and Operator Theory, 2010, 4 : 821 - 843
  • [2] Non-commutative functional calculus: Unbounded operators
    Colombo, Fabrizio
    Gentili, Graziano
    Sabadini, Irene
    Struppa, Daniele C.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (02) : 251 - 259
  • [3] Non-commutative functional calculus
    Jim Agler
    John E. McCarthy
    [J]. Journal d'Analyse Mathématique, 2019, 137 : 211 - 229
  • [4] Non-commutative functional calculus
    Agler, Jim
    McCarthy, John E.
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2019, 137 (01): : 211 - 229
  • [5] Derivative bounded functional calculus of power bounded operators on Banach spaces
    Loris Arnold
    [J]. Acta Scientiarum Mathematicarum, 2021, 87 : 265 - 294
  • [6] Derivative bounded functional calculus of power bounded operators on Banach spaces
    Arnold, Loris
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2021, 87 (1-2): : 265 - 294
  • [7] A functional calculus for pairs of commuting polynomially bounded operators
    Ionescu, A
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1998, 24 (01): : 97 - 104
  • [8] Baire functional calculus for bounded-locally operators
    Mazighi, Mohamed
    El Kinani, Abdellah
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (01):
  • [9] Factorization of sectorial operators with bounded H∞-functional calculus
    Simard, A
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 1999, 25 (02): : 351 - 370
  • [10] Baire functional calculus for bounded-locally operators
    Mohamed Mazighi
    Abdellah El Kinani
    [J]. Boletín de la Sociedad Matemática Mexicana, 2023, 29