Evolution of metabolic diversity: Insights from microbial polyketide synthases

被引:79
|
作者
Jenke-Kodama, Holger [1 ]
Dittmann, Elke [1 ]
机构
[1] Humboldt Univ, Inst Biol, Dept Mol Ecol, D-10115 Berlin, Germany
关键词
Polyketide; Evolution; Metabolic diversity; Recombination; BIOSYNTHETIC GENE-CLUSTER; SECONDARY METABOLISM; HETEROLOGOUS EXPRESSION; NATURAL-PRODUCTS; FITNESS COSTS; MYXOCOCCUS-XANTHUS; PLANT POLYPHENOLS; RESISTANCE; SYMBIONT; BACTERIA;
D O I
10.1016/j.phytochem.2009.05.021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polyketides are a family of complex natural products that are built from simple carboxylic acid building blocks. In microorganisms, the majority of these secondary metabolites are produced by exceptionally large, multifunctional proteins termed polyketide synthases (PKSs). Each unit of a type I PKS assembly line resembles a mammalian type fatty acid synthase (FAS), although certain domains are optionally missing. The evolutionary analysis of microbial PKS has revealed a long joint evolution process of PKSs and FASs. The phylogenomic analysis of modular type I PKSs as the most widespread PKS type in bacteria showed a large impact of gene duplications and gene losses on the evolution of type I PKS in different bacterial groups. The majority of type I PKSs in actinobacteria and cyanobacteria may have evolved from a common ancestor, whereas in proteobacteria most type I PKSs were acquired from other bacterial groups. The modularization of type I PKSs almost unexceptionally started with multiple duplications of a single ancestor module. The repeating modules represent ideal platforms for recombination events that can lead to corresponding changes in the actual chemistry of the products. The analysis of these "natural reprogramming" events of PKSs may assist in the development of concepts for the biocombinatorial design of bioactive compounds. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1858 / 1866
页数:9
相关论文
共 50 条
  • [21] Evolution and taxonomic distribution of nonribosomal peptide and polyketide synthases
    Amoutzias, Grigoris D.
    Van de Peer, Yves
    Mossialos, Dimitris
    FUTURE MICROBIOLOGY, 2008, 3 (03) : 361 - 370
  • [22] Exploring the diversity of marine-derived fungal polyketide synthases
    Mayer, Kimberly M.
    Ford, Jermaine
    Macpherson, Gordon R.
    Padgett, David
    Volkmann-Kohimeyer, Brigitte
    Kohimeyer, Jan
    Murphy, Colleen
    Douglas, Susan E.
    Wright, Jonathan M.
    Wright, Jeffrey L. C.
    CANADIAN JOURNAL OF MICROBIOLOGY, 2007, 53 (02) : 291 - 302
  • [23] Assembly Line Polyketide Synthases: Mechanistic Insights and Unsolved Problems
    Khosla, Chaitan
    Herschlag, Daniel
    Cane, David E.
    Walsh, Christopher T.
    BIOCHEMISTRY, 2014, 53 (18) : 2875 - 2883
  • [24] Exploiting genetic diversity by directed evolution: molecular breeding of type III polyketide synthases improves productivity
    Zha, Wenjuan
    Rubin-Pitel, Sheryl B.
    Zhao, Huimin
    MOLECULAR BIOSYSTEMS, 2008, 4 (03) : 246 - 248
  • [25] Diversity of polyketide synthases found in the Aspergillus end Streptomyces genomes
    Sanchez, James F.
    Chiang, Yi-Ming
    Wang, Clay C. C.
    MOLECULAR PHARMACEUTICS, 2008, 5 (02) : 226 - 233
  • [26] Structural and computational insights into the substrate specificity of acyltransferase domains from modular polyketide synthases
    Huang, Shuxin
    Ji, Huining
    Zheng, Jianting
    FEBS JOURNAL, 2024, 291 (17) : 3839 - 3855
  • [27] Towards Prediction of Metabolic Products of Polyketide Synthases: An In Silico Analysis
    Yadav, Gitanjali
    Gokhale, Rajesh S.
    Mohanty, Debasisa
    PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (04)
  • [28] Probing Selectivity and Creating Structural Diversity Through Hybrid Polyketide Synthases
    Koch, Aaron A.
    Schmidt, Jennifer J.
    Lowell, Andrew N.
    Hansen, Douglas A.
    Coburn, Katherine M.
    Chemler, Joseph A.
    Sherman, David H.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (32) : 13575 - 13580
  • [29] Structural insights into dehydratase substrate selection for the borrelidin and fluvirucin polyketide synthases
    Barajas, Jesus F.
    McAndrew, Ryan P.
    Thompson, Mitchell G.
    Backman, Tyler W. H.
    Pang, Bo
    de Rond, Tristan
    Pereira, Jose H.
    Benites, Veronica T.
    Martin, Hector Garcia
    Baidoo, Edward E. K.
    Hillson, Nathan J.
    Adams, Paul D.
    Keasling, Jay D.
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2019, 46 (08) : 1225 - 1235
  • [30] Polyketide mimetics yield structural and mechanistic insights into product template domain function in nonreducing polyketide synthases
    Barajas, Jesus F.
    Shakya, Gaurav
    Moreno, Gabriel
    Rivera, Heriberto, Jr.
    Jackson, David R.
    Topper, Caitlyn L.
    Vagstad, Anna L.
    La Clair, James J.
    Townsend, Craig A.
    Burkart, Michael D.
    Tsai, Shiou-Chuan
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (21) : E4142 - E4148