A Generalization of the Logarithmic Gross-Sobolev Inequality

被引:0
|
作者
Nasibov, Sh. M. [1 ]
机构
[1] Baku State Univ, Inst Appl Math, AZ-1148 Baku, Azerbaijan
关键词
D O I
10.1134/S1064562419040033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sharp integral inequality is proved that is used to derive a Sobolev interpolation inequality. A generalization of the logarithmic Sobolev inequality is proposed based on the Sobolev interpolation inequality.
引用
收藏
页码:329 / 331
页数:3
相关论文
共 50 条
  • [21] Lipschitz constants and logarithmic Sobolev inequality
    Fujita, Yasuhiro
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (02) : 705 - 712
  • [22] Rearrangement and the weighted logarithmic Sobolev inequality
    Ming-hong Jiang
    Jian-miao Ruan
    Xiang-rong Zhu
    Applied Mathematics-A Journal of Chinese Universities, 2021, 36 : 207 - 217
  • [23] Logarithmic Sobolev inequality for symmetric forms
    陈木法
    ScienceinChina,SerA., 2000, Ser.A.2000 (06) : 601 - 608
  • [24] A Stein deficit for the logarithmic Sobolev inequality
    Michel Ledoux
    Ivan Nourdin
    Giovanni Peccati
    Science China Mathematics, 2017, 60 : 1163 - 1180
  • [25] A Stein deficit for the logarithmic Sobolev inequality
    LEDOUX Michel
    NOURDIN Ivan
    PECCATI Giovanni
    ScienceChina(Mathematics), 2017, 60 (07) : 1163 - 1180
  • [26] DEFICIT ESTIMATES FOR THE LOGARITHMIC SOBOLEV INEQUALITY
    Indrei, Emanuel
    Kim, Daesung
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2021, 34 (7-8) : 437 - 466
  • [27] A logarithmic Sobolev inequality on the real line
    Pearson, JM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (11) : 3339 - 3345
  • [28] Geometric asymptotics and the logarithmic Sobolev inequality
    Beckner, W
    FORUM MATHEMATICUM, 1999, 11 (01) : 105 - 137
  • [29] Bounds on the deficit in the logarithmic Sobolev inequality
    Bobkov, S. G.
    Gozlan, N.
    Roberto, C.
    Samson, P. -M.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (11) : 4110 - 4138
  • [30] Rearrangement and the weighted logarithmic Sobolev inequality
    Jiang Ming-hong
    Ruan Jian-miao
    Zhu Xiang-rong
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2021, 36 (02) : 207 - 217