Atomic and electronic structure of monolayer graphene on 6H-SiC(0001)(3x3): A scanning tunneling microscopy study

被引:26
|
作者
Hiebel, F. [1 ]
Mallet, P. [1 ]
Magaud, L. [1 ]
Veuillen, J. -Y. [1 ]
机构
[1] UJF, CNRS, Inst Neel, F-38042 Grenoble 9, France
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 23期
关键词
energy gap; Fermi level; graphene; monolayers; passivation; scanning tunnelling microscopy; scanning tunnelling spectroscopy; semiconductor-insulator boundaries; silicon compounds; superlattices; surface reconstruction; surface states; tunnelling; wide band gap semiconductors; MASSLESS DIRAC FERMIONS; EPITAXIAL GRAPHENE; SUSPENDED GRAPHENE; SURFACE; GRAPHITE; BANDGAP; GAS; CONFINEMENT; RU(0001); ORIGIN;
D O I
10.1103/PhysRevB.80.235429
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an investigation of the atomic and electronic structure of graphene monolayer islands on the 6H-SiC(0001)(3x3)[SiC(3x3)] surface reconstruction using scanning tunneling microscopy (STM) and spectroscopy (STS). The orientation of the graphene lattice changes from one island to the other. In the STM images, this rotational disorder gives rise to various superlattices with periods in the nm range. We show that those superlattices are moireacute patterns (MPs) and we correlate their apparent height with the stacking at the graphene/SiC(3x3) interface. The contrast of the MP in STM images corresponds to a small topographic modulation (by typically 0.2 A degrees) of the graphene layer. From STS measurements we find that the substrate surface presents a 1.5 eV wide bandgap encompassing the Fermi level. This substrate surface bandgap subsists below the graphene plane. The tunneling spectra are spatially homogeneous on the islands within the substrate surface gap, which shows that the MPs do not impact the low energy electronic structure of graphene. We conclude that the SiC(3x3) reconstruction efficiently passivates the substrate surface and that the properties of the graphene layer which grows on top of it should be similar to those of the ideal material.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Atomic structure of 6H-SiC(0001¯)-(2×2)C
    Lehrst. F. Festkörperphysik, Friedrich-Alexander Univ. E., Staudtstr. 7, DE-91058 Erlangen, Germany
    Materials Science Forum, 2000, 338
  • [42] Atomic-scale investigation of graphene formation on 6H-SiC(0001)
    Guisinger, N. P.
    Rutter, G. M.
    Crain, J. N.
    Heiliger, C.
    First, P. N.
    Stroscio, J. A.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2008, 26 (04): : 932 - 937
  • [43] Adsorbate effects of the surface structure of 6H-SiC(0001) √3 x √3-R30°
    Aoyama, T
    Hisada, Y
    Mukainakano, S
    Ichimiya, A
    SILICON CARBIDE AND RELATED MATERIALS 2001, PTS 1 AND 2, PROCEEDINGS, 2002, 389-3 : 705 - 708
  • [44] Coverage dependence and surface atomic structure of Mn/Si(111)-3x3 studied by scanning tunneling microscopy and spectroscopy
    Grytzelius, J. Hirvonen
    Zhang, H. M.
    Johansson, L. S. O.
    PHYSICAL REVIEW B, 2009, 80 (23):
  • [45] SCANNING-TUNNELING-MICROSCOPY ON THE 6H SIC(0001) SURFACE
    KULAKOV, MA
    HEUELL, P
    TSVETKOV, VF
    BULLEMER, B
    SURFACE SCIENCE, 1994, 315 (03) : 248 - 254
  • [46] State selective electron transport through electronic surface states of 6H-SiC(0001)-3 x 3
    Baffou, G.
    Mayne, A. J.
    Comtet, G.
    Dujardin, G.
    PHYSICAL REVIEW B, 2008, 77 (16)
  • [47] Growth dynamics and kinetics of monolayer and multilayer graphene on a 6H-SiC(0001) substrate
    Poon, Siew Wai
    Chen, Wei
    Wee, Andrew T. S.
    Tok, Eng Soon
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (41) : 13522 - 13533
  • [48] Graphene-substrate interaction on 6H-SiC(000(1)over bar): A scanning tunneling microscopy study
    Hiebel, F.
    Mallet, P.
    Varchon, F.
    Magaud, L.
    Veuillen, J-Y.
    PHYSICAL REVIEW B, 2008, 78 (15)
  • [49] On the electronic properties of defective graphene buffer layer on 6H-SiC(0001)
    Huelmo, C. Pereyra
    Iribarne, Federico
    Denis, Pablo A.
    COMPUTATIONAL CONDENSED MATTER, 2021, 26
  • [50] Graphene Manipulation on 4H-SiC(0001) Using Scanning Tunneling Microscopy
    Xu, Peng
    Ackerman, Matthew L.
    Barber, Steven D.
    Schoelz, James K.
    Qi, Dejun
    Thibado, Paul M.
    Wheeler, Virginia D.
    Nyakiti, Luke O.
    Myers-Ward, Rachael L.
    Eddy, Charles R., Jr.
    Gaskill, D. Kurt
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (03)