Fractal properties of interpolatory subdivision schemes and their application in fractal generation

被引:19
|
作者
Zheng, Hongchan [1 ]
Ye, Zhenglin [1 ]
Lei, Youming [1 ]
Liu, Xiaodong [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.chaos.2005.10.075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a novel method to analyze the fractal properties of the 4-point binary and the 3-point ternary interpolatory subdivision schemes. The relationship between the parameter and the fractal behavior of the limit curve of the two schemes is obtained, respectively. As an application of the obtained results, the generation of fractal curves and surfaces is discussed. Many examples show that the results presented in this paper offer a direct means for a fast generation of fractals. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:113 / 123
页数:11
相关论文
共 50 条
  • [31] Ternary interpolatory subdivision schemes for the triangular mesh
    Zheng, HC
    Ye, ZL
    CURRENT TRENDS IN HIGH PERFORMANCE COMPUTING AND ITS APPLICATIONS, PROCEEDINGS, 2005, : 197 - 206
  • [32] Interpolatory convexity preserving subdivision schemes for curves
    Li, A
    GEOMETRIC MODELING AND PROCESSING 2004, PROCEEDINGS, 2004, : 379 - 381
  • [33] Interpolatory subdivision schemes with the optimal approximation order
    Zhang, Baoxing
    Zheng, Hongchan
    Song, Weijie
    Lin, Zengyao
    Zhou, Jie
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 1 - 14
  • [34] Unified Framework of Approximating and Interpolatory Subdivision Schemes for Construction of Class of Binary Subdivision Schemes
    Ashraf, Pakeeza
    Mustafa, Ghulam
    Ghaffar, Abdul
    Zahra, Rida
    Nisar, Kottakkaran Sooppy
    Mahmoud, Emad E.
    Alharbi, Wedad R.
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [35] Proving convexity preserving properties of interpolatory subdivision schemes through reconstruction operators
    Amat, S.
    Donat, R.
    Trillo, J. C.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7413 - 7421
  • [36] Interpolatory quad/triangle subdivision schemes for surface design
    Jiang, Qingtang
    Li, Baobin
    Zhu, Weiwei
    COMPUTER AIDED GEOMETRIC DESIGN, 2009, 26 (08) : 904 - 922
  • [37] TERNARY INTERPOLATORY SUBDIVISION SCHEMES ORIGINATED FROM SPLINES
    Averbuch, Amir Z.
    Zheludev, Valery A.
    Fatakhov, Gary B.
    Yakubov, Eduard H.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2011, 9 (04) : 611 - 633
  • [38] Shape preserving interpolatory subdivision schemes for nonuniform data
    Kuijt, F
    van Damme, R
    JOURNAL OF APPROXIMATION THEORY, 2002, 114 (01) : 1 - 32
  • [39] Interpolatory rank-1 vector subdivision schemes
    Conti, C
    Zimmermann, G
    COMPUTER AIDED GEOMETRIC DESIGN, 2004, 21 (04) : 341 - 351
  • [40] A method for constructing interpolatory subdivision schemes and blending subdivisions
    Li, G.
    Ma, W.
    COMPUTER GRAPHICS FORUM, 2007, 26 (02) : 185 - 201