A Personalized Privacy-Preserving Scheme for Federated Learning

被引:4
|
作者
Li, Zhenyu [1 ]
机构
[1] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei, Peoples R China
来源
2022 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, BIG DATA AND ALGORITHMS (EEBDA) | 2022年
关键词
personalized differential privacy; federated learning; stochastic gradient descent; composition theorem;
D O I
10.1109/EEBDA53927.2022.9744805
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Federated learning (FL), which is a state-of-theart distributed machine learning (DML) model, brings the spare resources of mobile devices into full play and provides strong security guarantee to local sensitive data by local differential privacy. However, the introduction of noise data leads to an unignored reduction of model utility. In this paper, we consider the heterogeneity of privacy requirement for various participants in FL and propose a novel federated learning scheme (PGC-LDP) that lets users personally choose their privacy level based on federated stochastic gradient descent algorithm with local differential privacy. In the scheme, we design a new algorithm based on Nguyen's solution in client side and optimize aggregation method in server side. Moreover, we theoretically analyze the privacy guarantee and verify the utility of PGC-LDP on real-world dataset.
引用
收藏
页码:1352 / 1356
页数:5
相关论文
共 50 条
  • [41] POSTER: Privacy-preserving Federated Active Learning
    Kurniawan, Hendra
    Mambo, Masahiro
    SCIENCE OF CYBER SECURITY, SCISEC 2022 WORKSHOPS, 2022, 1680 : 223 - 226
  • [42] Privacy-preserving federated learning for radiotherapy applications
    Hayati, H.
    Heijmans, S.
    Persoon, L.
    Murguia, C.
    van de Wouw, N.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S238 - S240
  • [43] AddShare: A Privacy-Preserving Approach for Federated Learning
    Asare, Bernard Atiemo
    Branco, Paula
    Kiringa, Iluju
    Yeap, Tet
    COMPUTER SECURITY. ESORICS 2023 INTERNATIONAL WORKSHOPS, PT I, 2024, 14398 : 299 - 309
  • [44] A Syntactic Approach for Privacy-Preserving Federated Learning
    Choudhury, Olivia
    Gkoulalas-Divanis, Aris
    Salonidis, Theodoros
    Sylla, Issa
    Park, Yoonyoung
    Hsu, Grace
    Das, Amar
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1762 - 1769
  • [45] PPFLV: privacy-preserving federated learning with verifiability
    Zhou, Qun
    Shen, Wenting
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 12727 - 12743
  • [46] Contribution Measurement in Privacy-Preserving Federated Learning
    Hsu, Ruei-hau
    Yu, Yi-an
    Su, Hsuan-cheng
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2024, 40 (06) : 1173 - 1196
  • [47] Privacy-Preserving Federated Learning in Fog Computing
    Zhou, Chunyi
    Fu, Anmin
    Yu, Shui
    Yang, Wei
    Wang, Huaqun
    Zhang, Yuqing
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (11): : 10782 - 10793
  • [48] Federated Learning for Privacy-Preserving Speaker Recognition
    Woubie, Abraham
    Backstrom, Tom
    IEEE ACCESS, 2021, 9 : 149477 - 149485
  • [49] Privacy-Preserving Decentralized Aggregation for Federated Learning
    Jeon, Beomyeol
    Ferdous, S. M.
    Rahmant, Muntasir Raihan
    Walid, Anwar
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,
  • [50] Privacy-Preserving Federated Learning via Disentanglement
    Zhou, Wenjie
    Li, Piji
    Han, Zhaoyang
    Lu, Xiaozhen
    Li, Juan
    Ren, Zhaochun
    Liu, Zhe
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 3606 - 3615