Accurate polynomial interpolation by using the Bernstein basis

被引:6
|
作者
Marco, Ana [1 ]
Martinez, Jose-Javier [1 ]
Viana, Raquel [1 ]
机构
[1] Univ Alcala, Dept Fis & Matemat, Campus Univ, Alcala De Henares 28871, Madrid, Spain
关键词
Interpolation; Bernstein-Vandermonde matrix; Totally positive matrix; Generalized Kronecker product; Padua points; COMPUTATIONS; SOLVABILITY; ALGORITHM; STABILITY;
D O I
10.1007/s11075-016-0215-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of polynomial interpolation with the Lagrange-type data when using the Bernstein basis instead of the monomial basis is addressed. The extension to the bivariate case, which leads to the use of a generalized Kronecker product, is also developed. In addition to the matricial description of the solution and the proof of unisolvence, algorithms for the computation of the coefficients of the interpolating polynomial are presented. Numerical experiments illustrating the advantage of computing with Bernstein-Vandermonde matrices instead of with Vandermonde matrices are included.
引用
收藏
页码:655 / 674
页数:20
相关论文
共 50 条
  • [21] On an interpolation polynomial of S. N. Bernstein type
    He, JX
    Ye, JC
    ACTA MATHEMATICA HUNGARICA, 1996, 70 (04) : 293 - 303
  • [22] A New Third S.N.Bernstein Interpolation Polynomial
    何甲兴
    李笑牛
    数学季刊, 1998, (04) : 10 - 16
  • [23] Solving nonlinear polynomial systems in the barycentric Bernstein basis
    Martin Reuter
    Tarjei S. Mikkelsen
    Evan C. Sherbrooke
    Takashi Maekawa
    Nicholas M. Patrikalakis
    The Visual Computer, 2008, 24 : 187 - 200
  • [24] Solving nonlinear polynomial systems in the barycentric Bernstein basis
    Reuter, Martin
    Mikkelsen, Tarjei S.
    Sherbrooke, Evan C.
    Maekawa, Takashi
    Patrikalakis, Nicholas M.
    VISUAL COMPUTER, 2008, 24 (03): : 187 - 200
  • [25] PROOF OF THE CONJECTURES OF BERNSTEIN AND ERDOS CONCERNING THE OPTIMAL NODES FOR POLYNOMIAL INTERPOLATION
    BOOR, CD
    PINKUS, A
    JOURNAL OF APPROXIMATION THEORY, 1978, 24 (04) : 289 - 303
  • [26] On a linear combination of S.N. Bernstein trigonometric interpolation polynomial
    He, JX
    APPLIED MATHEMATICS AND COMPUTATION, 1999, 106 (2-3) : 197 - 203
  • [27] Bernstein polynomial basis for numerical solution of boundary value problems
    Tabrizidooz, Hamid Reza
    Shabanpanah, Khadigeh
    NUMERICAL ALGORITHMS, 2018, 77 (01) : 211 - 228
  • [28] Approximation by the modified λ-Bernstein-polynomial in terms of basis function
    Ayman-Mursaleen, Mohammad
    Nasiruzzaman, Md.
    Rao, Nadeem
    Dilshad, Mohammad
    Nisar, Kottakkaran Sooppy
    AIMS MATHEMATICS, 2024, 9 (02): : 4409 - 4426
  • [29] The Transformation Matrix of Chebyshev III-Bernstein Polynomial Basis
    Rababah, Abedallah
    AL-Shbool, Ayman
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [30] A Characterization of Parameter-dependent LMIs on Bernstein Polynomial Basis
    Kojima, Akira
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 4687 - 4694