Symmetry breaking interactions for the Schrodinger equation in three-dimensional space-time

被引:2
|
作者
Güngör, F [1 ]
机构
[1] Istanbul Tech Univ, Fac Sci, Dept Math, TR-80626 Istanbul, Turkey
关键词
D O I
10.1016/S0375-9601(00)00301-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A systematic study of symmetry breaking for the nonlinear Schrodinger equation i psi(t) + Delta psi = F(x, y, t, psi, psi*) with Delta being the two dimensional Laplace operator is presented. The free panicle equation that corresponds to F = 0 is known to be invariant under the nine dimensional Schrodinger group Sch(2). Tn this Letter. using the existing subalgebra classification of the Schrodinger algebra, we construct the most general interaction term F(x, y, t, psi, psi*) for each subgroup. Thus, while the symmetry group of the equation is reduced from Sch(2) to the: considered subgroup, invariance under the remaining subgroup still allows us to find the group theoretical properties of the corresponding modified nonlinear equations which are good candidates to be solvable models. We list all the results obtained in tables. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
下载
收藏
页码:164 / 170
页数:7
相关论文
共 50 条
  • [21] DYNAMIC SYMMETRY-BREAKING AND SPACE-TIME TOPOLOGY
    KIM, SK
    NAMGUNG, W
    SOH, KS
    YEE, JH
    PHYSICAL REVIEW D, 1987, 36 (10): : 3172 - 3177
  • [22] CONFORMAL SYMMETRY BREAKING AND QUANTIZATION IN CURVED SPACE-TIME
    FROLOV, VM
    GRIB, AA
    MOSTEPANENKO, VM
    PHYSICS LETTERS A, 1978, 65 (04) : 282 - 284
  • [23] SYMMETRY BREAKING FOR A NONLINEAR SCHRODINGER EQUATION
    DAVIES, EB
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 64 (03) : 191 - 210
  • [24] Dynamics of spontaneous symmetry breaking in a space-time crystal
    Stehouwer, J. N.
    Stoof, H. T. C.
    Smits, J.
    van der Straten, P.
    PHYSICAL REVIEW A, 2021, 104 (04)
  • [25] SPACE-TIME TOPOLOGY AND SPONTANEOUS SYMMETRY-BREAKING
    ISHAM, CJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (11): : 2943 - 2956
  • [26] Spontaneous symmetry breaking in the space-time of an arbitrary dimension
    Gu, JA
    Hwang, WYP
    MODERN PHYSICS LETTERS A, 2002, 17 (30) : 1979 - 1989
  • [27] On the space-time fractional Schrodinger equation with time independent potentials
    Baqer, Saleh
    Boyadjiev, Lyubomir
    PANORAMA OF MATHEMATICS: PURE AND APPLIED, 2016, 658 : 81 - 90
  • [28] Femtospectrochemistry: Novel possibilities with three-dimensional (space-time) resolution
    Letokhov, VS
    Fleming, GR
    Jost, R
    CHEMICAL REACTIONS AND THEIR CONTROL ON THE FEMTOSECOND TIME SCALE XXTH SOLVAY CONFERENCE ON CHEMISTRY, 1997, 101 : 873 - 887
  • [29] A three-dimensional network-based space-time prism
    Neutens, Tijs
    Van de Weghe, Nico
    Witlox, Frank
    De Maeyer, Philippe
    JOURNAL OF GEOGRAPHICAL SYSTEMS, 2008, 10 (01) : 89 - 107
  • [30] Three-dimensional space-time focusing of catastrophe wave fields
    Kryukovskij, A.S.
    Rastyagaev, D.V.
    Vergizaev, I.A.
    Radiotekhnika i Elektronika, 1999, 44 (04): : 455 - 462