Symmetry breaking interactions for the Schrodinger equation in three-dimensional space-time

被引:2
|
作者
Güngör, F [1 ]
机构
[1] Istanbul Tech Univ, Fac Sci, Dept Math, TR-80626 Istanbul, Turkey
关键词
D O I
10.1016/S0375-9601(00)00301-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A systematic study of symmetry breaking for the nonlinear Schrodinger equation i psi(t) + Delta psi = F(x, y, t, psi, psi*) with Delta being the two dimensional Laplace operator is presented. The free panicle equation that corresponds to F = 0 is known to be invariant under the nine dimensional Schrodinger group Sch(2). Tn this Letter. using the existing subalgebra classification of the Schrodinger algebra, we construct the most general interaction term F(x, y, t, psi, psi*) for each subgroup. Thus, while the symmetry group of the equation is reduced from Sch(2) to the: considered subgroup, invariance under the remaining subgroup still allows us to find the group theoretical properties of the corresponding modified nonlinear equations which are good candidates to be solvable models. We list all the results obtained in tables. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:164 / 170
页数:7
相关论文
共 50 条
  • [1] Construction of Schrodinger invariant equations in three-dimensional space-time
    Güngör, F
    [J]. PROCEEDINGS OF THE WORKSHOP ON NONLINEARITY, INTEGRABILITY AND ALL THAT: TWENTY YEARS AFTER NEEDS '79, 2000, : 296 - 303
  • [2] SYMMETRY BREAKING INTERACTIONS FOR TIME-DEPENDENT SCHRODINGER EQUATION
    BOYER, CP
    SHARP, RT
    WINTERNITZ, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (08) : 1439 - 1451
  • [3] A space-time parallel solver for the three-dimensional heat equation
    Speck, Robert
    Ruprecht, Daniel
    Emmett, Matthew
    Bolten, Matthias
    Krause, Rolf
    [J]. PARALLEL COMPUTING: ACCELERATING COMPUTATIONAL SCIENCE AND ENGINEERING (CSE), 2014, 25 : 263 - 272
  • [4] SPACE-TIME GEOMETRY AND SYMMETRY BREAKING
    LUCIANI, JF
    [J]. NUCLEAR PHYSICS B, 1978, 135 (01) : 111 - 130
  • [5] Space-time scattering for the Schrodinger equation
    Jensen, A
    [J]. ARKIV FOR MATEMATIK, 1998, 36 (02): : 363 - 377
  • [6] SYMMETRY-BREAKING IN AN ANISOTROPIC SPACE-TIME
    CRITCHLEY, R
    DOWKER, JS
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (01): : 157 - 161
  • [7] Supersymmetric space-time symmetry breaking sources
    Louise Anderson
    Matthew M. Roberts
    [J]. Journal of High Energy Physics, 2021
  • [8] Time symmetry breaking, duality and Cantorian space-time
    El, Naschie, M.S.
    [J]. Chaos, Solitons and Fractals, 1996, 7 (04):
  • [9] Time symmetry breaking, duality and Cantorian space-time
    ElNaschie, MS
    [J]. CHAOS SOLITONS & FRACTALS, 1996, 7 (04) : 499 - &
  • [10] Supersymmetric space-time symmetry breaking sources
    Anderson, Louise
    Roberts, Matthew M.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (01)