Volume and variance in the linear statistical model

被引:1
|
作者
Araújo, IC
de Oliveira, MP
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
[2] Univ Sao Paulo, Dept Comp Engn, BR-05508 Sao Paulo, Brazil
关键词
least square solutions; variance matrix;
D O I
10.1016/S0024-3795(02)00440-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a simple expression for the variance of each individual element in the least squares solution of a linear statistical system using some geometric arguments. From that result, lower bounds for the variances are obtained, provided that the length of each matrix column is kept within a known range. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:303 / 306
页数:4
相关论文
共 50 条
  • [31] Experimental design modulates variance in BOLD activation: The variance design general linear model
    Gaut, Garren
    Li, Xiangrui
    Lu, Zhong-Lin
    Steyvers, Mark
    HUMAN BRAIN MAPPING, 2019, 40 (13) : 3918 - 3929
  • [32] The residual likelihood ratio test for the variance ratio in a linear model with two variance components
    Li, YL
    Birkes, D
    Thomas, DR
    BIOMETRICAL JOURNAL, 1996, 38 (08) : 961 - 972
  • [33] A Variance Shift Model for Detection of Outliers in the Linear Measurement Error Model
    Babadi, Babak
    Rasekh, Abdolrahman
    Rasekhi, Ali Akbar
    Zare, Karim
    Zadkarami, Mohammad Reza
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [34] Statistical model of systematic errors: Linear error model
    Rudnyi, EB
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1996, 34 (01) : 41 - 54
  • [35] Statistical model of systematic errors: Linear error model
    Dept. of Chem. Moscow Stt. Univ., 119899 Moscow, Russia
    CHEMOMETR. INTELL. LAB. SYST., 1 (41-54):
  • [36] Linear and non-linear model for statistical localization of landmarks
    Romaniuk, B
    Desvignes, M
    Revenu, M
    Deshayes, MJ
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITON, VOL IV, PROCEEDINGS, 2002, : 393 - 396
  • [37] Variance least squares estimators for multivariate linear mixed model
    Han, Jun
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (10) : 3345 - 3355
  • [38] Superiority of empirical Bayes estimation of error variance in linear model
    Ling Chen
    Laisheng Wei
    Frontiers of Mathematics in China, 2012, 7 : 629 - 644
  • [39] PROCEDURE FOR ESTIMATING VARIANCE COMPONENTS IN NON-LINEAR MODEL
    JOHNSON, P
    MILLIKEN, GA
    BIOMETRICS, 1978, 34 (01) : 159 - 159
  • [40] A Exact Test for a Variance Ratio in an Unbalanced Mixed Linear Model
    Wu Shiyan
    Li Xinmin
    DATA PROCESSING AND QUANTITATIVE ECONOMY MODELING, 2010, : 628 - 635