Two-dimensional simulation of the damped Kuramoto-Sivashinsky equation via radial basis function-generated finite difference scheme combined with an exponential time discretization
被引:28
|
作者:
Dehghan, Mehdi
论文数: 0引用数: 0
h-index: 0
机构:
Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, IranAmirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, Iran
Dehghan, Mehdi
[1
]
Mohammadi, Vahid
论文数: 0引用数: 0
h-index: 0
机构:
Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, IranAmirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, Iran
Mohammadi, Vahid
[1
]
机构:
[1] Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, Iran
We apply a numerical scheme based on a meshless method in space and an explicit exponential Runge-Kutta in time for the solution of the damped Kuramoto-Sivashinsky equation in two-dimensional spaces. The proposed meshless method is radial basis function-generated finite difference, which approximates the derivatives of the unknown function with respect to the spatial variables by a linear combination of the function values at given points in the domain and weights. Also, in this approach there is no need a mesh or triangulation for approximation. For each point, the weights are computed separately in its local sub-domain by solving a small radial basis function interpolant. Besides, a numerical algorithm based on singular value decomposition of the local radial basis function interpolation matrix [59] is applied to find the suitable shape parameter for each interpolation problem. We also consider an explicit time discretization based on exponential Runge-Kutta scheme such that its stability region is bigger than the classical form of Runge-Kutta method. Some numerical simulations are provided on the square, circular and annular domains to show the capability of the numerical scheme proposed here.
机构:
Univ Ljubljana, Fac Mech Engn, Askerceva Cesta 6, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Fac Mech Engn, Askerceva Cesta 6, SI-1000 Ljubljana, Slovenia
Vuga, Gasper
Mavric, Bostjan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Mech Engn, Askerceva Cesta 6, SI-1000 Ljubljana, Slovenia
Inst Met & Technol, Lepi Pot 11, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Fac Mech Engn, Askerceva Cesta 6, SI-1000 Ljubljana, Slovenia
Mavric, Bostjan
Sarler, Bozidar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Mech Engn, Askerceva Cesta 6, SI-1000 Ljubljana, Slovenia
Inst Met & Technol, Lepi Pot 11, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Fac Mech Engn, Askerceva Cesta 6, SI-1000 Ljubljana, Slovenia
机构:
East China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R ChinaEast China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
Xu, Xiaoyong
Zhou, Fengying
论文数: 0引用数: 0
h-index: 0
机构:
East China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R ChinaEast China Univ Technol, Sch Sci, Nanchang 330013, Jiangxi, Peoples R China
机构:
Univ Ljubljana, Fac Mech Engn, Askerceva Cesta 6, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Fac Mech Engn, Askerceva Cesta 6, SI-1000 Ljubljana, Slovenia
Vuga, Gasper
Mavric, Bostjan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Mech Engn, Askerceva Cesta 6, SI-1000 Ljubljana, Slovenia
Inst Met & Technol, Lepi Pot 11, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Fac Mech Engn, Askerceva Cesta 6, SI-1000 Ljubljana, Slovenia
Mavric, Bostjan
Hanoglu, Umut
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Mech Engn, Askerceva Cesta 6, SI-1000 Ljubljana, Slovenia
Inst Met & Technol, Lepi Pot 11, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Fac Mech Engn, Askerceva Cesta 6, SI-1000 Ljubljana, Slovenia
Hanoglu, Umut
Sarler, Bozidar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Mech Engn, Askerceva Cesta 6, SI-1000 Ljubljana, Slovenia
Inst Met & Technol, Lepi Pot 11, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Fac Mech Engn, Askerceva Cesta 6, SI-1000 Ljubljana, Slovenia