Personalized Privacy-Preserving Social Recommendation

被引:0
|
作者
Meng, Xuying [1 ,2 ]
Wang, Suhang [3 ]
Shu, Kai [3 ]
Li, Jundong [3 ]
Chen, Bo [4 ]
Liu, Huan [3 ]
Zhang, Yujun [1 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Arizona State Univ, Comp Sci & Engn, Tempe, AZ 85281 USA
[4] Michigan Technol Univ, Dept Comp Sci, Houghton, MI 49931 USA
来源
THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE | 2018年
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Privacy leakage is an important issue for social recommendation. Existing privacy preserving social recommendation approaches usually allow the recommender to fully control users' information. This may be problematic since the recommender itself may be untrusted, leading to serious privacy leakage. Besides, building social relationships requires sharing interests as well as other private information, which may lead to more privacy leakage. Although sometimes users are allowed to hide their sensitive private data using privacy settings, the data being shared can still be abused by the adversaries to infer sensitive private information. Supporting social recommendation with least privacy leakage to untrusted recommender and other users (i.e., friends) is an important yet challenging problem. In this paper, we aim to address the problem of achieving privacy-preserving social recommendation under personalized privacy settings. We propose PrivSR, a novel framework for privacy-preserving social recommendation, in which users can model ratings and social relationships privately. Meanwhile, by allocating different noise magnitudes to personalized sensitive and non-sensitive ratings, we can protect users' privacy against the untrusted recommender and friends. Theoretical analysis and experimental evaluation on real-world datasets demonstrate that our framework can protect users' privacy while being able to retain effectiveness of the underlying recommender system.
引用
收藏
页码:3796 / 3803
页数:8
相关论文
共 50 条
  • [41] Preserving data privacy in social recommendation
    Liu, Shu-Shu
    Liu, An
    Zhao, Lei
    Liu, Guan-Feng
    Li, Zhi-Xu
    Zheng, Kai
    Zhou, Xiao-Fang
    Tongxin Xuebao/Journal on Communications, 2015, 36 (12):
  • [42] Decentralized federated learning with privacy-preserving for recommendation systems
    Guo, Jianlan
    Zhao, Qinglin
    Li, Guangcheng
    Chen, Yuqiang
    Lao, Chengxue
    Feng, Li
    ENTERPRISE INFORMATION SYSTEMS, 2023, 17 (09)
  • [43] PriParkRec: Privacy-Preserving Decentralized Parking Recommendation Service
    Li, Zengpeng
    Alazab, Mamoun
    Garg, Sahil
    Hossain, M. Shamim
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (05) : 4037 - 4050
  • [44] Privacy-preserving recommendation systems for consumer healthcare services
    Katzenbeisser, Stefan
    Petkovic, Milan
    ARES 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON AVAILABILITY, SECURITY AND RELIABILITY, 2008, : 889 - 895
  • [45] Decentralized Graph Neural Network for Privacy-Preserving Recommendation
    Zheng, Xiaolin
    Wang, Zhongyu
    Chen, Chaochao
    Qian, Jiashu
    Yang, Yao
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 3494 - 3504
  • [46] A verifiable and privacy-preserving framework for federated recommendation system
    Gao F.
    Zhang H.
    Lin J.
    Xu H.
    Kong F.
    Yang G.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (04) : 4273 - 4287
  • [47] SECUREREC: Privacy-Preserving Recommendation with Distributed Matrix Factorization
    Liu, Wenyan
    Cheng, Junhong
    Wang, Xiangfeng
    Wang, Xiaoling
    ADVANCED DATA MINING AND APPLICATIONS, 2020, 12447 : 480 - 495
  • [48] Fully privacy-preserving location recommendation in outsourced environments
    Han, Lulu
    Luo, Weiqi
    Yang, Anjia
    Zheng, Yandong
    Lu, Rongxing
    Lai, Junzuo
    Cheng, Yudan
    AD HOC NETWORKS, 2023, 141
  • [49] A Privacy-Preserving Task Recommendation Framework for Mobile Crowdsourcing
    Gong, Yanmin
    Guo, Yuanxiong
    Fang, Yuguang
    2014 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2014), 2014, : 588 - 593
  • [50] A Blockchain-based Privacy-Preserving Recommendation Mechanism
    Lin, Liangjie
    Tian, Yuchen
    Liu, Yang
    2021 IEEE 5TH INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, SECURITY AND PRIVACY (ICCSP), 2021, : 74 - 78