Multi-attention based Deep Neural Network with hybrid features for Dynamic Sequential Facial Expression Recognition

被引:26
|
作者
Sun, Xiao [1 ]
Xia, Pingping [1 ]
Ren, Fuji [1 ]
机构
[1] Hefei Univ Technol, Sch Comp & Informat, Hefei 230009, Peoples R China
关键词
Dynamic sequence facial expression; recognition; FACS; CNNs; Attention mechanism; LOCAL BINARY PATTERNS; SEQUENCES; IMAGE; FACE;
D O I
10.1016/j.neucom.2019.11.127
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In interpersonal communication, the expression is an import way to express one's emotions. In order to make computers understand facial expressions like human beings, a large number of researchers have put a lot of time and energy into it. But for now, most of the work of dynamic sequence facial expression recognition fails to make full use of the combined advantages of shallow features (prior knowledge) and depth features (high-level semantic). Therefore, this paper implements a dynamic sequence facial expression recognition system that integrates shallow features and deep features with the attention mechanism. In order to extract the shallow features, an Attention Shallow Model (ASModel) is proposed by using the relative position of facial landmarks and the texture characteristics of the local area of the face to describe the Action Units of the Facial Action Coding System. And with the advantage of the deep convolutional neural network in expressing high-level features, a Attention Deep Model (ADModel) is also designed to extract deep features on sequence facial images. Finally, the ASModel and the ADModel are integrated to a Multi-attention Shallow and Deep Model (MSDModel) to complete the dynamic sequence facial expression recognition. There are three kinds of attention mechanism introduced, such as Self-Attention (SA), Weight-Attention (WA), and Convolution-Attention (CA). We verify our dynamic expression recognition system on three publicly available databases include CK+, MMI, and OuluCASIA and get superior performance than other state-of-art results. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:378 / 389
页数:12
相关论文
共 50 条
  • [41] Learning Multi-Attention Convolutional Neural Network for Fine-Grained Image Recognition
    Zheng, Heliang
    Fu, Jianlong
    Mei, Tao
    Luo, Jiebo
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5219 - 5227
  • [42] Automatic Facial Expression Recognition Based on Hybrid Features
    Zhang, Ling
    Chen, Siping
    Wang, Tianfu
    Liu, Zhuo
    2012 INTERNATIONAL CONFERENCE ON FUTURE ELECTRICAL POWER AND ENERGY SYSTEM, PT B, 2012, 17 : 1817 - 1823
  • [43] Multi-Attention Convolutional Neural Network for Video Deblurring
    Zhang, Xiaoqin
    Wang, Tao
    Jiang, Runhua
    Zhao, Li
    Xu, Yuewang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 1986 - 1997
  • [44] Deep Neural Network Architecture: Application for Facial Expression Recognition
    Garcia, M.
    Ramirez, S.
    IEEE LATIN AMERICA TRANSACTIONS, 2020, 18 (07) : 1311 - 1319
  • [45] A Cascade Attention Based Facial Expression Recognition Network by Fusing Multi-Scale Spatio-Temporal Features
    Zhu, Xiaoliang
    He, Zili
    Zhao, Liang
    Dai, Zhicheng
    Yang, Qiaolai
    SENSORS, 2022, 22 (04)
  • [46] A novel facial expression recognition model based on harnessing complementary features in multi-scale network with attention fusion
    Ghadai, Chakrapani
    Patra, Dipti
    Okade, Manish
    IMAGE AND VISION COMPUTING, 2024, 149
  • [47] Facial Expression Recognition Based on Multiscale Features and Attention Mechanism
    Yao, Lisha
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2024, 58 (04) : 429 - 440
  • [48] Learning Deep Global Multi-Scale and Local Attention Features for Facial Expression Recognition in the Wild
    Zhao, Zengqun
    Liu, Qingshan
    Wang, Shanmin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 6544 - 6556
  • [49] Fusing dynamic deep learned features and handcrafted features for facial expression recognition
    Fan, Xijian
    Tjahjadi, Tardi
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 65
  • [50] Deep Convolutional Neural Network for Facial Expression Recognition using Facial Parts
    Nwosu, Lucy
    Wang, Hui
    Lu, Jiang
    Unwala, Ishaq
    Yang, Xiaokun
    Zhang, Ting
    2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, 2017, : 1318 - 1321