A conservative stable finite element method for Stokes flow and nearly incompressible linear elasticity on rectangular grid

被引:2
|
作者
Chen, Yuyan [1 ]
Zhang, Shuo [2 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, NCMIS, LSEC,ICMSEC, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
Incompressible Stokes problem; Nearly incompressible linear elasticity problem; Stable finite element; Conservative; LEAST-SQUARES METHODS; CONFORMING B-SPLINES; MASS CONSERVATION; SCOTT-VOGELIUS; OSEEN PROBLEM; FREE GALERKIN; FLUID-FLOW; EQUATIONS; LOCKING; APPROXIMATIONS;
D O I
10.1016/j.cam.2017.04.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss finite element methods for the incompressible Stokes problem and the nearly incompressible linear elasticity problem. Specifically, we present a finite element pair for the incompressible Stokes problem, which satisfies the discrete inf-sup condition and the discrete Korn's inequality, and moreover, which is element-wise conservative. The pair provides a locking-free method for the nearly incompressible linear elasticity problem without reduced integration. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 70
页数:18
相关论文
共 50 条