Data-Driven Modeling of Low Frequency Noise Using Capture-Emission Energy Maps

被引:0
|
作者
Lee, Jonghwan [1 ]
机构
[1] Sangmyung Univ, Dept Syst Semicond Engn, Cheonan 31066, South Korea
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 01期
基金
新加坡国家研究基金会;
关键词
low frequency noise; negative bias temperature instability; capture-emission energy map; gaussian mixture model; 1/F NOISE; NBTI; DEGRADATION; SIMULATION; COMPONENT; RECOVERY;
D O I
10.3390/app11010356
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new approach for modeling low frequency noise is presented to enable the predictions of noise behavior from negative bias temperature instability (NBTI). The noise model is based on a capture-emission energy (CEE) map describing the probability density function of widely distributed defect capture-emission activation energies. To enlarge the capture-emission energy window and to perform the accurate estimation of the recoverable component of CEE, the Gaussian mixture model (GMM) is applied to the CEE map. This approach provides an efficient identification of noise sources and an in-depth noise analysis under both stationary and cyclo-stationary conditions.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [21] Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling to Generate Diverse Collective Behaviors
    Ren, Jiaping
    Wang, Xinjie
    Jin, Xiaogang
    Manocha, Dinesh
    PLOS ONE, 2016, 11 (05):
  • [22] Analytic Modeling of the Bias Temperature Instability Using Capture/Emission Time Maps
    Grasser, T.
    Wagner, P. -J.
    Reisinger, H.
    Aichinger, Th
    Pobegen, G.
    Nelhiebel, M.
    Kaczer, B.
    2011 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2011,
  • [23] Data-Driven Uncertainty Modeling for Robust Feedback Active Noise Control in Headphones
    Hilgemann, Florian
    Chatzimoustafa, Egke
    Jax, Peter
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2024, 72 (12): : 873 - 883
  • [24] Data-driven modeling of noise time series with convolutional generative adversarial networks *
    Wunderlich, Adam
    Sklar, Jack
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):
  • [25] Data-driven modeling of an oscillating surge wave energy converter using dynamic mode decomposition
    Lydon, B.
    Polagye, B.
    Brunton, S.
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2025, 17 (02)
  • [26] A Procedure for the Estimation of Frequency Response using a Data-Driven Method
    Pinheiro, Bruno
    Lugnani, Lucas
    Dotta, Daniel
    2021 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2021,
  • [27] A Data-driven Nonlinear Recharge Controller for Energy Storage in Frequency Regulation
    Ma, Wenting
    Xu, Bolun
    2021 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2021,
  • [28] Data-driven controller tuning using frequency domain specifications
    Garcia, Daniel
    Karimi, Alireza
    Longchamp, Roland
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (12) : 4032 - 4042
  • [29] Low frequency information compensation based data-driven Marchenko imaging
    Jin Zhong-Yuan
    Han Li-Guo
    Hu Yong
    Ge Qi-Xin
    Zhang Pan
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2017, 60 (09): : 3601 - 3615
  • [30] Data-Driven Energy Modeling of Machining Centers Through Automata Learning
    Lestingi, Livia
    Frigerio, Nicla
    Bersani, Marcello M.
    Matta, Andrea
    Rossi, Matteo
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 5769 - 5780