On a first integral of the Kepler problem

被引:1
|
作者
Vivarelli, MD
机构
[1] Dipartimento di Matematica, Politecnico di Milano
关键词
D O I
10.1063/1.532143
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quadratic first integral of the Kepler problem, obtained by Benenti (''Orthogonal separable dynamical systems,'' 5th International Conference on Differential Geometry and its Applications, 24-28 August 1992, Silesian University at Opava) through separation in elliptic coordinates, is shown to be intimately connected with the pre-quantization of the Kepler manifold, thus acquiring a physical interpretation. (C) 1997 American Institute of Physics.
引用
收藏
页码:4561 / 4569
页数:9
相关论文
共 50 条
  • [21] THE UNIVERSAL KEPLER PROBLEM
    Meng, Guowu
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2014, 36 : 47 - 57
  • [22] RELATIVISTIC KEPLER PROBLEM
    JOHNSON, MH
    LIPPMANN, BA
    PHYSICAL REVIEW, 1950, 78 (03): : 329 - 329
  • [23] A Note on the Kepler Problem
    D. V. Anosov
    Journal of Dynamical and Control Systems, 2002, 8 : 413 - 442
  • [24] The Kepler problem and noncommutativity
    Romero, JM
    Vergara, JD
    MODERN PHYSICS LETTERS A, 2003, 18 (24) : 1673 - 1680
  • [25] A generalization of the Kepler problem
    G. Meng
    Physics of Atomic Nuclei, 2008, 71 : 946 - 950
  • [26] The accelerated Kepler problem
    Namouni, F.
    Guzzo, M.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2007, 99 (01): : 31 - 44
  • [27] A generalization of the Kepler problem
    Meng, G.
    PHYSICS OF ATOMIC NUCLEI, 2008, 71 (05) : 946 - 950
  • [28] Minimizers for the Kepler Problem
    Richard Montgomery
    Qualitative Theory of Dynamical Systems, 2020, 19
  • [29] ON THE REGULARIZATION OF THE KEPLER PROBLEM
    Heckman, Gert
    de Laat, Tim
    JOURNAL OF SYMPLECTIC GEOMETRY, 2012, 10 (03) : 463 - 473
  • [30] The Kepler problem S-sphere and the Kepler manifold
    Vivarelli, MD
    MECCANICA, 1998, 33 (06) : 541 - 551