Time-Frequency Complexity Maps for EEG-Based Diagnosis of Alzheimer's Disease Using a Lightweight Deep Neural Network

被引:5
|
作者
Polat, Hasan [1 ]
机构
[1] Bingol Univ, Dept Elect & Energy, TR-12000 Bingol, Turkey
关键词
Alzheimer' disease; EEG; deep learning; entropy; MobileNet; complexity; PERMUTATION ENTROPY; FEATURES;
D O I
10.18280/ts.390623
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Alzheimer's disease (AD) is a neurodegenerative disorder with an unknown etiology and a significant prevalence. Rapid and accurate detection of AD is crucial to assist in a more effective and tailored treatment plan to delay the progression of the disease. This paper introduces a novel approach based on a time-frequency complexity map (complextrogram) for the automated AD diagnosis. The complextrogram is the topographic complexity level of an EEG signal, plotted as a function of time and frequency. The complextrogram representations were fed into a well-known lightweight deep neural network called MobileNet for robust performance on resource and accuracy tradeoffs. The experiments were performed using a five-fold cross-validation technique on a publicly available database containing clinical EEG recordings from 24 patients with AD and 24 healthy, age-matched controls. The proposed pipeline provided competitive performance with just 2.2 M parameters and achieved the best overall accuracy for some locations in the frontal lobes (Fp2 and F8 channels). For both channels, the classification accuracy was 100%. Also, the violin plot was used to get further details of the distribution of complexity values for specific frequency rhythms. After statistical evaluation, it was observed that neurodegenerative conditions caused changes in chaotic behaviors, including increased delta complexity and decreased alpha complexity. Results demonstrated that the complextrogram representation proved its potency for the input quality required by the deep learning architectures. Furthermore, the complextrogram method is a promising pathway to discriminate and reflect the fundamental characteristics of AD abnormalities.
引用
收藏
页码:2103 / 2113
页数:11
相关论文
共 50 条
  • [41] Deep Learning in the EEG Diagnosis of Alzheimer's Disease
    Zhao, Yilu
    He, Lianghua
    COMPUTER VISION - ACCV 2014 WORKSHOPS, PT I, 2015, 9008 : 340 - 353
  • [42] Detection of Alzheimer's Dementia by Using Deep Time-Frequency Feature Extraction
    Cura, Ozlem Karabiber
    Ture, H. Sabiha
    Akan, Aydin
    ELECTRICA, 2024, 24 (01): : 109 - 118
  • [43] EEG-based clinical decision support system for Alzheimer's disorders diagnosis using EMD and deep learning techniques
    Alsharabi, Khalil
    Salamah, Yasser Bin
    Aljalal, Majid
    Abdurraqeeb, Akram M.
    Alturki, Fahd A.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [44] Early Alzheimer's disease diagnosis based on EEG spectral images using deep learning
    Bi Xiaojun
    Wang Haibo
    NEURAL NETWORKS, 2019, 114 : 119 - 135
  • [45] An Effective Deep Neural Network Architecture for EEG-Based Recognition of Emotions
    Henni, Khadidja
    Mezghani, Neila
    Mitiche, Amar
    Abou-Abbas, Lina
    Benazza-Ben Yahia, Amel
    IEEE ACCESS, 2025, 13 : 4487 - 4498
  • [46] Evaluation of Neuro Images for the Diagnosis of Alzheimer's Disease Using Deep Learning Neural Network
    Ahila, A.
    Poongodi, M.
    Hamdi, Mounir
    Bourouis, Sami
    Kulhanek, Rastislav
    Mohmed, Faizaan
    FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [47] Volumetric Feature-Based Alzheimer's Disease Diagnosis From sMRI Data Using a Convolutional Neural Network and a Deep Neural Network
    Basher, Abol
    Kim, Byeong C.
    Lee, Kun Ho
    Jung, Ho Yub
    IEEE ACCESS, 2021, 9 : 29870 - 29882
  • [48] IDENTIFYING NEURAL DISCHARGES USING TIME-FREQUENCY DISTRIBUTIONS FOR EEG
    Guerrero-Mosquera, Carlos
    Navia Vazquez, Angel
    Malanda Trigueros, Armando
    ICSPC: 2007 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS, VOLS 1-3, PROCEEDINGS, 2007, : 1563 - +
  • [49] Convolutional neural network framework for EEG-based ADHD diagnosis in children
    Hassan, Umaisa
    Singhal, Amit
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2024, 12 (01):
  • [50] Stable EEG-Based biometric system using functional connectivity based on Time-Frequency features with optimal channels
    Ashenaei, Roghaieh
    Beheshti, Ali Asghar
    Rezaii, Tohid Yousefi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 77