On Proximal Subgradient Splitting Method for Minimizing the sum of two Nonsmooth Convex Functions

被引:19
|
作者
Cruz, Jose Yunier Bello [1 ]
机构
[1] Northern Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA
关键词
Convex problems; Nonsmooth optimization problems; Proximal forward-backward splitting iteration; Subgradient method; SCALE OPTIMIZATION PROBLEMS; FORWARD-BACKWARD; VARIATIONAL-INEQUALITIES; MONOTONE INCLUSIONS; INVERSE PROBLEMS; SIGNAL RECOVERY; CONVERGENCE; ALGORITHMS; PROJECTION; SCHEMES;
D O I
10.1007/s11228-016-0376-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a variant of the proximal forward-backward splitting iteration for solving nonsmooth optimization problems in Hilbert spaces, when the objective function is the sum of two nondifferentiable convex functions. The proposed iteration, which will be called Proximal Subgradient Splitting Method, extends the classical subgradient iteration for important classes of problems, exploiting the additive structure of the objective function. The weak convergence of the generated sequence was established using different stepsizes and under suitable assumptions. Moreover, we analyze the complexity of the iterates.
引用
收藏
页码:245 / 263
页数:19
相关论文
共 50 条
  • [31] On the projected subgradient method for nonsmooth convex optimization in a Hilbert space
    Ya. I. Alber
    A. N. Iusem
    M. V. Solodov
    [J]. Mathematical Programming, 1998, 81 : 23 - 35
  • [32] On the projected subgradient method for nonsmooth convex optimization in a Hilbert space
    Alber, Ya.I.
    Iusem, A.N.
    Solodov, M.V.
    [J]. Mathematical Programming, Series A, 1998, 81 (01): : 23 - 35
  • [33] On the projected subgradient method for nonsmooth convex optimization in a Hilbert space
    Alber, YI
    Iusem, AN
    Solodov, MV
    [J]. MATHEMATICAL PROGRAMMING, 1998, 81 (01) : 23 - 35
  • [34] Aggregate subgradient method for linear constrained nonsmooth convex programming
    Zhang, Hongyan
    [J]. Zhongnan Kuangye Xueyuan Xuebao/Journal of Central-South Institute of Mining and Metallurgy, 1993, 24 (05):
  • [35] Spectral projected subgradient method for nonsmooth convex optimization problems
    Nataša Krejić
    Nataša Krklec Jerinkić
    Tijana Ostojić
    [J]. Numerical Algorithms, 2023, 93 : 347 - 365
  • [36] Spectral projected subgradient method for nonsmooth convex optimization problems
    Krejic, Natasa
    Jerinkic, Natasa Krklec
    Ostojic, Tijana
    [J]. NUMERICAL ALGORITHMS, 2023, 93 (01) : 347 - 365
  • [37] A method of centers with approximate subgradient linearizations for nonsmooth convex optimization
    Kiwiel, Krzysztof C.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (04) : 1467 - 1489
  • [38] A quasisecant method for minimizing nonsmooth functions
    Bagirov, Adil M.
    Ganjehlou, Asef Nazari
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2010, 25 (01): : 3 - 18
  • [39] AFFINE MINORANTS MINIMIZING SUM OF CONVEX FUNCTIONS
    MCLINDEN, L
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1978, 24 (04) : 569 - 583
  • [40] On a Continuous Method for Minimizing of Nonsmooth Functions
    Polyakova, Lyudmila N.
    Karelin, Vladimir V.
    [J]. 2015 INTERNATIONAL CONFERENCE "STABILITY AND CONTROL PROCESSES" IN MEMORY OF V.I. ZUBOV (SCP), 2015, : 338 - 341