Tolerance allocation using Monte Carlo simulation

被引:1
|
作者
Tulcan, A. [1 ]
Banciu, F., V [1 ]
Grozav, I [1 ]
机构
[1] Politehn Univ Timisoara, Mech Engn Fac, IMF Dept, Bv Mihai Viteazu 1, Timisoara 300222, Romania
来源
MODTECH INTERNATIONAL CONFERENCE - MODERN TECHNOLOGIES IN INDUSTRIAL ENGINEERING VIII | 2020年 / 916卷
关键词
MECHANICAL ASSEMBLIES;
D O I
10.1088/1757-899X/916/1/012122
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tolerance allocation is an important issue in product manufacturing, ensuring on the one hand the interchangeability of parts in an assembly and on the other hand, it has a major impact on the costs of manufacturing products and quality. This paper aim is to assign in a 2D dimensional chain with, dimensional and geometric tolerances, dimensional and angular (geometrical tolerances) values to dimensions in a variation interval in order to obtain a design required variation in dimension and angle for the closing element of that chain, using the Monte Carlo (MC) simulation. MC simulation randomly assigns values of the dimensions of the dimensional chain (DC) - for their module and angle - to their tolerance field, and then calculates the range for module and angle (R) caused at closing dimension in a sufficiently large number of cases. The ratio of the desired tolerance (Tdo) to the dimension chain closing element and the range (R) resulting from the simulation, respectively Tdo/R are calculated and compared with a value that must be greater or at least equal to an imposed value of an index dependent of the Cp - capability desired at the closing dimension. At the desired value that meets design requirements, the tolerance allocation process is completed.
引用
收藏
页数:10
相关论文
共 50 条
  • [22] Monte Carlo simulation of SDEs using GANs
    van Rhijn, Jorino
    Oosterlee, Cornelis W.
    Grzelak, Lech A.
    Liu, Shuaiqiang
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (03) : 1359 - 1390
  • [23] Probabilistic Reanalysis Using Monte Carlo Simulation
    Nikolaidis, Efstratios
    Saleem, Sirine
    Farizal
    Zhang, Geng
    Mourelatos, Zissimos P.
    SAE INTERNATIONAL JOURNAL OF MATERIALS AND MANUFACTURING, 2009, 1 (01) : 22 - 35
  • [24] Target tracking using Monte Carlo simulation
    Semerdjiev, TA
    Jilkov, VP
    Angelova, DS
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (2-5) : 441 - 447
  • [25] Monte Carlo simulation of linac using PRIMO
    Yang Li
    Xingru Sun
    Ying Liang
    Yuchao Hu
    Chenbin Liu
    Radiation Oncology, 17
  • [26] The simulation of detonations using a Monte Carlo method
    Long, LN
    Anderson, JB
    RAREFIED GAS DYNAMICS, 2001, 585 : 653 - 657
  • [27] The Using of Monte Carlo Simulation in the Teaching Process
    Sediva, Blanka
    INTERNATIONAL JOURNAL FOR TECHNOLOGY IN MATHEMATICS EDUCATION, 2019, 26 (03): : 145 - 150
  • [28] Monte Carlo simulation of SDEs using GANs
    Jorino van Rhijn
    Cornelis W. Oosterlee
    Lech A. Grzelak
    Shuaiqiang Liu
    Japan Journal of Industrial and Applied Mathematics, 2023, 40 : 1359 - 1390
  • [29] Plan Verification using Monte Carlo Simulation
    Ludemann, L.
    Fuelhs, A.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2020, 196 (SUPPL 1) : S117 - S117
  • [30] Performance modeling using Monte Carlo simulation
    Srinivasan, Ram
    Cook, Jeanine
    Lubeck, Olaf
    IEEE Computer Architecture Letters, 2006, 5 (01) : 38 - 41