Corrosion behavior of select MAX phases in NaOH, HCl and H2SO4

被引:99
|
作者
Jovic, V. D.
Jovic, B. M.
Gupta, S.
El-Raghy, T.
Barsoum, M. W. [1 ]
机构
[1] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[2] Univ Belgrade, Ctr Multidisciplinary Studies, Belgrade 11030, Serbia
[3] 3ONE2 LLC, Voorhees, NJ USA
关键词
MAX phases; Ti; Nb; Ti2AlC; V2GeC; (Ti; Nb)(2)AlC; V2AlC; Cr2AlC; Ti2AlN; Ti4AlN3; Ti3SiC2; Ti3GeC2; passivity; active dissolution; trans-passive behavior; NaOH; HCl; H2SO4;
D O I
10.1016/j.corsci.2006.04.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we report on the electrochemical corrosion of select MAX phases, namely Ti2AlC, (Ti,Nb)(2)AlC, V2AlC, V2GeC, Cr2AlC, Ti2AlN, Ti4AlN3, Ti3SiC2 and Ti3GeC2 in 1 M NaOH, 1 M HCl and 1 M H2SO4 solutions. Polarization characteristics recorded in 1 M NaOH show that V2AlC, V2GeC and Cr2AlC undergo active dissolution at potentials more positive than the corrosion potential, while Ti2AlC, (Ti,Nb)(2)AlC, Ti3SiC2 and Ti3GeC2 passivate. In the 1 M HCl solutions, Ti2AlC, V2AlC and V2GeC actively dissolve; Ti3SiC2 and Ti3GeC2 passivate. Depending on potential, (Ti,Nb)(2)AlC and Cr2AlC showed trans-passive behavior. In 1 M H2SO4 solutions, Ti2AlC, (Ti,Nb)(2)AlC, Ti2SiC2 and Ti3GeC2 passivate, V2AlC and V2GeC show active dissolution, while Cr2AlC exhibits trans-passive behavior. Ti2AlN and Ti4AlN3 were passive in all solutions except in 1 M HCl, where Ti2AlN showed trans-passive behavior. Given that the corrosion behavior of (Ti,Nb)(2)AlC is unlike either Ti or Nb, the behavior of the former cannot be predicted from that of the latter. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4274 / 4282
页数:9
相关论文
共 50 条
  • [21] Gundelia tournefortii as a Green Corrosion Inhibitor for Mild Steel in HCl and H2SO4 Solutions
    Soltani, N.
    Khayatkashani, M.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (01): : 46 - 62
  • [22] In search of functionality for efficient inhibition of mild steel corrosion both in HCl and H2SO4
    Ali, S. A.
    Hamdan, A. J.
    Al-Taq, A. A.
    Zaidi, S. M. J.
    Saeed, M. T.
    CORROSION ENGINEERING SCIENCE AND TECHNOLOGY, 2011, 46 (07) : 796 - 806
  • [23] CORROSION FATIGUE OF TYPE-304 STAINLESS-STEEL IN H2SO4 AND BOILING NAOH
    BOATENG, A
    BEGLEY, JA
    STAEHLE, RW
    CORROSION, 1980, 36 (11) : 633 - 638
  • [24] Effect of dilute H2SO4 droplets on initial corrosion behavior of PCB
    Xiao, Kui, 1600, Central South University of Technology (24):
  • [25] POLARIZATION PERFORMANCE OF STAINLESS STEELS IN H2SO4 AND HCL
    TROSELIUS, L
    CORROSION SCIENCE, 1971, 11 (07) : 473 - +
  • [26] Phase and extraction equilibria in H2O–sulfonol–HCl (H2SO4) and H2O–sodium dodecyl sulfate–HCl (H2SO4) systems
    S. A. Zabolotnykh
    A. E. Lesnov
    S. A. Denisova
    Russian Journal of Physical Chemistry A, 2016, 90 : 1942 - 1947
  • [27] Pyrrhotite leaching in acid mixtures of HCl and H2SO4
    Pratt, AR
    Nesbitt, HW
    AMERICAN JOURNAL OF SCIENCE, 1997, 297 (08) : 807 - 828
  • [28] Inhibitor for the Corrosion of Mild Steel in H2SO4
    Patel, Niketan S.
    Jauhari, Smita
    Mehta, Girishkumar N.
    SOUTH AFRICAN JOURNAL OF CHEMISTRY-SUID-AFRIKAANSE TYDSKRIF VIR CHEMIE, 2009, 62 : 200 - 204
  • [29] Inhibition of zinc corrosion in H2SO4 by hexamethylenetetramine
    Jameel, AA
    Elangovan, P
    Balakrishnan, K
    ASIAN JOURNAL OF CHEMISTRY, 1996, 8 (04) : 635 - 643
  • [30] Corrosion of steel in concentrated H2So4 solutions
    Abed, Y
    Hammouti, B
    BULLETIN OF ELECTROCHEMISTRY, 2000, 16 (07): : 296 - 298