A Systematic Way to Extend the Debye-Huckel Theory beyond Dilute Electrolyte Solutions

被引:9
|
作者
Xiao, Tiejun [1 ]
Song, Xueyu [2 ,3 ]
机构
[1] Guizhou Educ Univ, Guizhou Prov Key Lab Computat Nanomat Sci, Guizhou Synerge Innovat Ctr Sci Big Data Adv Mfg, Guiyang 550018, Peoples R China
[2] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[3] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2021年 / 125卷 / 10期
基金
中国国家自然科学基金;
关键词
674.1 Small Marine Craft - 701.1 Electricity: Basic Concepts and Phenomena - 702 Electric Batteries and Fuel Cells - 803 Chemical Agents and Basic Industrial Chemicals - 804 Chemical Products Generally - 921.6 Numerical Methods;
D O I
10.1021/acs.jpca.0c10226
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An extended Debye-Hiickel theory with fourth order gradient term is developed for electrolyte solutions; namely, the electric potential phi(r) of the bulk electrolyte solution can be described by del(2)phi(r) = kappa(2)phi(r) + L-Q(2)del(4)phi(r), where the parameters kappa and L-Q are chosen to reproduce the first two roots of the dielectric response function of the bulk solution. Three boundary conditions for solving the electric potential problem are proposed based upon the continuity conditions of involving functions at the dielectric boundary, with which a boundary element method for the electric potential of a solute with a general geometrical shape and charge distribution is derived. Solutions for the electric potential of a spherical ion and a diatomic molecule are found and used to calculate their electrostatic solvation energies. The validity of the theory is successfully demonstrated when applied to binary as well as multicomponent primitive models of electrolyte solutions.
引用
收藏
页码:2173 / 2183
页数:11
相关论文
共 50 条
  • [42] Dilution heat of a strong electrolyte in the boundary layer of the Debye-Huckel theory
    Lange, EW
    Messner, G
    ZEITSCHRIFT FUR ELEKTROCHEMIE UND ANGEWANDTE PHYSIKALISCHE CHEMIE, 1927, 33 : 431 - 440
  • [43] An analysis of the parameters in the Debye-Huckel theory
    Sun, Li
    Lei, Qun
    Peng, Baoliang
    Kontogeorgis, Georgios M.
    Liang, Xiaodong
    FLUID PHASE EQUILIBRIA, 2022, 556
  • [44] DISCUSSION ON CORRECTNESS OF DEBYE-HUCKEL THEORY
    MIKHAILOV, VA
    ZHURNAL FIZICHESKOI KHIMII, 1975, 49 (10): : 2731 - 2732
  • [45] DEBYE-HUCKEL THEORY ON RANDOM FRACTALS
    BLENDER, R
    DIETERICH, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (13): : L785 - L790
  • [46] Debye-Huckel theory for interfacial geometries
    Netz, RR
    PHYSICAL REVIEW E, 1999, 60 (03): : 3174 - 3182
  • [47] On the extension of the Debye-Huckel theory of strong electrolytes to concentrated solutions
    Gronwall, T. H.
    LaMer, V. K.
    SCIENCE, 1926, 64 (1648) : 122 - 122
  • [48] Charge oscillations in Debye-Huckel theory
    Lee, BP
    Fisher, ME
    EUROPHYSICS LETTERS, 1997, 39 (06): : 611 - 616
  • [49] Debye-Huckel theory for slab geometries
    Netz, RR
    EUROPEAN PHYSICAL JOURNAL E, 2000, 3 (02): : 131 - 141
  • [50] THE ROLE OF HYDRATION IN THE DEBYE-HUCKEL THEORY
    ROBINSON, RA
    STOKES, RH
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1949, 51 (04) : 593 - 604