Performance Optimization of Federated Learning over Mobile Wireless Networks

被引:4
|
作者
Chen, Mingzhe [1 ,2 ]
Poor, H. Vincent [2 ]
Saad, Walid [3 ]
Cui, Shuguang [1 ,4 ]
机构
[1] Chinese Univ Hong Kong, Shenzhen Res Inst Big Data, Shenzhen, Peoples R China
[2] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[3] Virginia Tech, Bradley Dept Elect & Comp Engn, Wireless VT, Blacksburg, VA USA
[4] Chinese Univ Hong Kong, Future Network Intelligence Inst, Shenzhen, Peoples R China
基金
美国国家科学基金会; 国家重点研发计划;
关键词
D O I
10.1109/spawc48557.2020.9154300
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the problem of training federated learning (FL) algorithms over a wireless network with mobile users is studied. In the considered model, several mobile users and a network base station (BS) cooperatively perform an FL algorithm. In particular, the wireless mobile users train their local FL models and send the trained local FL model parameters to the BS. The BS will then integrate the received local FL models to generate a global FL model and send it back to all users. Due to the limited training time at each iteration, the number of users that can transmit their local FL models to the BS will be affected by changes in the users' locations and wireless channels. In this paper, this joint learning, user selection, and wireless resource allocation problem is formulated as an optimization problem whose goal is to minimize the FL loss function, which captures the FL performance, while meeting the transmission delay requirement. To solve this problem, a closed-form expression for the expected convergence rate of the FL algorithm is first derived to quantify the impact of the users' mobility and wireless factors on FL. Then, based on the expected FL convergence rate, the user selection and uplink resource allocation is optimized at each FL iteration so as to minimize the FL loss function while satisfying the FL parameter transmission delay requirement. Simulation results show that the proposed approach can reduce the FL loss function value by up to 20% compared to a standard FL algorithm.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Adaptive Hierarchical Federated Learning Over Wireless Networks
    Xu, Bo
    Xia, Wenchao
    Wen, Wanli
    Liu, Pei
    Zhao, Haitao
    Zhu, Hongbo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 2070 - 2083
  • [12] Asynchronous Federated Learning over Wireless Communication Networks
    Wang, Zhongyu
    Zhang, Zhaoyang
    Wang, Jue
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [13] An Overview of Enabling Federated Learning over Wireless Networks
    Foukalas, Fotis
    Tziouvaras, Athanasios
    Tsiftsis, Theodoros A.
    2021 IEEE INTERNATIONAL MEDITERRANEAN CONFERENCE ON COMMUNICATIONS AND NETWORKING (IEEE MEDITCOM 2021), 2021, : 271 - 276
  • [14] Federated Learning Over Energy Harvesting Wireless Networks
    Hamdi, Rami
    Chen, Mingzhe
    Ben Said, Ahmed
    Qaraqe, Marwa
    Poor, H. Vincent
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (01) : 92 - 103
  • [15] Asynchronous Federated Learning Over Wireless Communication Networks
    Wang, Zhongyu
    Zhang, Zhaoyang
    Tian, Yuqing
    Yang, Qianqian
    Shan, Hangguan
    Wang, Wei
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) : 6961 - 6978
  • [16] A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks
    Chen, Mingzhe
    Yang, Zhaohui
    Saad, Walid
    Yin, Changchuan
    Poor, H. Vincent
    Cui, Shuguang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (01) : 269 - 283
  • [17] Latency optimization for Federated Learning over Wireless Power Transfer
    Li, Ruijie
    Xu, Hongbo
    Zhang, Guoping
    Chen, Yun
    Chen, Xue
    PHYSICAL COMMUNICATION, 2022, 53
  • [18] Decentralized Federated Learning on the Edge Over Wireless Mesh Networks
    Salama, Abdelaziz
    Stergioulis, Achilleas
    Zaidi, Syed Ali Raza
    McLernon, Des
    IEEE ACCESS, 2023, 11 : 124709 - 124724
  • [19] Convergence Time Minimization of Federated Learning over Wireless Networks
    Chen, Mingzhe
    Poor, H. Vincent
    Saad, Walid
    Cui, Shuguang
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [20] Energy Efficient Federated Learning Over Wireless Communication Networks
    Yang, Zhaohui
    Chen, Mingzhe
    Saad, Walid
    Hong, Choong Seon
    Shikh-Bahaei, Mohammad
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (03) : 1935 - 1949