Inverse scattering in the Stark effect

被引:3
|
作者
Ishida, Atsuhide [1 ]
机构
[1] Tokyo Univ Sci, Dept Liberal Arts, Fac Engn, Katsushika Ku, 6-3-1 Niijuku, Tokyo 1258585, Japan
关键词
scattering theory; wave operator; scattering operator; LONG-RANGE SCATTERING; HAMILTONIANS; OPERATORS; SYSTEMS;
D O I
10.1088/1361-6420/ab2fec
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study one of the multidimensional inverse scattering problems for quantum systems governed by the Stark Hamiltonians. By applying the time-dependent method developed by Enss and Weder (1995 J. Math. Phys. 36 3902-21), we prove that the high-velocity limit of the scattering operator uniquely determines the short-range interaction potentials. Moreover, we prove that, when a long-range interaction potential is given, the high-velocity limit of the Dollard-type modified scattering operator uniquely determines the short-range part of the interactions. We allow the potential functions to belong to very broad classes. These results are improvements on the previous results obtained by Adachi and Maehara (2007 J. Math. Phys. 48 042101; Adachi et al 2013 Inverse Problems 29 085012).
引用
收藏
页数:20
相关论文
共 50 条
  • [31] INVERSE SCATTERING, INVERSE FIELD, AND INVERSE SOURCE THEORY
    BOJARSKI, NN
    GEOPHYSICS, 1982, 47 (04) : 467 - 467
  • [32] INVERSE SCATTERING, INVERSE FIELD, AND INVERSE SOURCE THEORY
    BOJARSKI, NN
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1981, 71 (12) : 1646 - 1646
  • [33] Investigation of the effect of super-resolution in nonlinear inverse scattering
    Markel, Vadim A.
    PHYSICAL REVIEW E, 2020, 102 (05)
  • [34] Gauge Equivalence and Inverse Scattering for Aharonov-Bohm Effect
    Eskin, Gregory
    Isozaki, Hiroshi
    O'Dell, Stephen
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (12) : 2164 - 2194
  • [36] Scattering and inverse scattering on ACH manifolds
    Guillarmou, Colin
    Barreto, Antonio Sa
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 622 : 1 - 55
  • [37] Local Inverse Scattering
    Domrin, A. V.
    GEOMETRIC METHODS IN PHYSICS, 2016, : 193 - 212
  • [38] Inverse scattering in guides
    Shestopalov, Yury
    Smirnov, Yury
    ALGEBRA, GEOMETRY, AND MATHEMATICAL PHYSICS 2010, 2012, 346
  • [39] REINFORCED INVERSE SCATTERING
    Jiang, Hanyang
    Khoo, Yuehaw
    Yang, Haizhao
    SIAM Journal on Scientific Computing, 2024, 46 (06):
  • [40] Inverse scattering: Revisited
    S. A. Aldenfariya
    A. M. Awin
    Journal of the Korean Physical Society, 2014, 64 : 1788 - 1791