Numerical treatment of the Navier-Stokes equations with slip boundary condition

被引:0
|
作者
Bänsch, E
Höhn, B
机构
[1] Univ Bremen, Zentrum Technomath, FB 3, D-28334 Bremen, Germany
[2] Univ Freiburg, Inst Angew Math, D-79104 Freiburg, Germany
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2000年 / 21卷 / 06期
关键词
Stokes equations; Navier Stokes equations; finite elements; slip boundary condition;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we present efficient numerical methods for the Navier Stokes equations with slip boundary conditions. A rst method is based on a saddle-point formulation of the slip boundary condition. A congruent gradient (CG) method is applied to the Schur complement operator in order to solve the problem. We present two preconditioners for the CG-method which result in convergence rates independent of the mesh size. For a second method the slip boundary condition is enforced pointwise for nodal values of the velocity at boundary nodes.
引用
收藏
页码:2144 / 2162
页数:19
相关论文
共 50 条
  • [21] Numerical treatment of defective boundary conditions for the Navier-Stokes equations
    Formaggia, L
    Gerbeau, JF
    Nobile, F
    Quarteroni, A
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) : 376 - 401
  • [22] Slip Boundary Conditions for the Compressible Navier-Stokes Equations
    Aoki, Kazuo
    Baranger, Celine
    Hattori, Masanari
    Kosuge, Shingo
    Martalo, Giorgio
    Mathiaud, Julien
    Mieussens, Luc
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2017, 169 (04) : 744 - 781
  • [23] Lp-theory for Stokes and Navier-Stokes equations with Navier boundary condition
    Amrouche, Cherif
    Rejaiba, Ahmed
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (04) : 1515 - 1547
  • [24] Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions
    Iftimie, Dragos
    Sueur, Franck
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (01) : 145 - 175
  • [25] On the global well-posedness for the compressible Navier-Stokes equations with slip boundary condition
    Shibata, Yoshihiro
    Murata, Miho
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (07) : 5761 - 5795
  • [26] FULL DISCRETISATION OF THE TIME DEPENDENT NAVIER-STOKES EQUATIONS WITH ANISOTROPIC SLIP BOUNDARY CONDITION
    Aldbaissy, Rim
    Chalhoub, Nancy
    Djoko, J. K.
    Sayah, Toni
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2023, 20 (04) : 497 - 517
  • [27] Power law slip boundary condition for Navier-Stokes equations: Discontinuous Galerkin schemes
    Djoko, J. K.
    Konlack, V. S.
    Sayah, T.
    [J]. COMPUTATIONAL GEOSCIENCES, 2024, 28 (01) : 107 - 127
  • [28] Power law slip boundary condition for Navier-Stokes equations: Discontinuous Galerkin schemes
    J. K. Djoko
    V. S. Konlack
    T. Sayah
    [J]. Computational Geosciences, 2024, 28 : 107 - 127
  • [29] BOUNDARY-CONDITION FOR NONSTATIONARY NAVIER-STOKES EQUATIONS
    BEMELMANS, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1978, 162 (02) : 145 - 173
  • [30] NAVIER-STOKES EQUATION WITH SLIP-LIKE BOUNDARY CONDITION
    Hashizume, Ken'ichi
    Koyama, Tetsuya
    Otani, Mitsuharu
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,