Network community detection and clustering with random walks

被引:4
|
作者
Ballal, Aditya [1 ,2 ]
Kion-Crosby, Willow B. [3 ]
Morozov, Alexandre, V [1 ,2 ]
机构
[1] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Ctr Quantitat Biol, Piscataway, NJ 08854 USA
[3] Helmholtz Inst RNA Infect Res, D-97080 Wurzburg, Germany
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 04期
基金
美国国家科学基金会;
关键词
COMPLEX NETWORKS;
D O I
10.1103/PhysRevResearch.4.043117
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an approach to partitioning network nodes into nonoverlapping communities, a key step in reveal-ing network modularity and functional organization. Our methodology, applicable to networks with weighted or unweighted symmetric edges, uses random walks to explore neighboring nodes in the same community. The walk-likelihood algorithm (WLA) produces an optimal partition of network nodes into a given number of communities. The walk-likelihood community finder employs WLA to predict both the optimal number of communities and the corresponding network partition. We have extensively benchmarked both algorithms, finding that they outperform or match other methods in terms of the modularity of predicted partitions and the number of links between communities. Making use of the computational efficiency of our approach, we investigated a large-scale map of roads and intersections in the state of Colorado. Our clustering yielded geographically sensible boundaries between neighboring communities.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Outlier detection using random walks
    Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824
    IEEE Comput. Soc., Biological and Artificial Intelligence Society, 1600, 532-539 (2006):
  • [32] Outlier detection using random walks
    Moonesinghe, H. D. K.
    Tan, Pang-Ning
    ICTAI-2006: EIGHTEENTH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, : 532 - +
  • [33] MIRACLE: A multiple independent random walks community parallel detection algorithm for big graphs
    Liu, Xiaoming
    Zhou, Yadong
    Hu, Chengchen
    Guan, Xiaohong
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2016, 70 : 89 - 101
  • [34] Community detection in heterogeneous social networks using 2-hop random walks
    Yang, Hailu
    Zhang, Jianpei
    Yang, Jing
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2015, 36 (12): : 1626 - 1631
  • [35] Estimating Network Parameters Using Random Walks
    Cooper, Colin
    Radzik, Tomasz
    Siantos, Yiannis
    2012 FOURTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ASPECTS OF SOCIAL NETWORKS (CASON), 2012, : 33 - 40
  • [36] Complex Network Comparison Using Random Walks
    Lu, Shan
    Kang, Jieqi
    Gong, Weibo
    Towsley, Don
    WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2014, : 727 - 730
  • [37] Random walks in local dynamics of network losses
    Yurkevich, I. V.
    Lerner, I. V.
    Stepanenko, A. S.
    Constantinou, C. C.
    PHYSICAL REVIEW E, 2006, 74 (04):
  • [38] Random walks on the Apollonian network with a single trap
    Zhang, Zhongzhi
    Guan, Jihong
    Xie, Wenlei
    Qi, Yi
    Zhou, Shuigeng
    EPL, 2009, 86 (01)
  • [39] Network meta-analysis and random walks
    Davies, Annabel L.
    Papakonstantinou, Theodoros
    Nikolakopoulou, Adriani
    Ruecker, Gerta
    Galla, Tobias
    STATISTICS IN MEDICINE, 2022, 41 (12) : 2091 - 2114
  • [40] Estimating network parameters using random walks
    Cooper, Colin
    Radzik, Tomasz
    Siantos, Yiannis
    SOCIAL NETWORK ANALYSIS AND MINING, 2014, 4 (01) : 1 - 19