Multi-Agent Reinforcement Learning Algorithm with Variable Optimistic-Pessimistic Criterion

被引:1
|
作者
Akchurina, Natalia [1 ]
机构
[1] Univ Gesamthsch Paderborn, Int Grad Sch Dynam Intelligent Syst, D-4790 Paderborn, Germany
来源
ECAI 2008, PROCEEDINGS | 2008年 / 178卷
关键词
D O I
10.3233/978-1-58603-891-5-433
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A reinforcement learning algorithm for multi-agent systems based on variable Hurwicz's optimistic-pessimistic criterion is proposed. The formal proof of its convergence is given. Hurwicz's criterion allows to embed initial knowledge of how friendly the environment in which the agent is supposed to function will be. Thorough testing of the developed algorithm against well-known reinforcement learning algorithms has shown that in many cases its successful performance can be explained by its tendency to force the other agents to follow the policy which is more profitable for it. In addition the variability of Hurwicz's criterion allowed it to converge to best-response against opponents with stationary policies.
引用
收藏
页码:433 / +
页数:2
相关论文
共 50 条
  • [21] Multi-Agent Reinforcement Learning With Distributed Targeted Multi-Agent Communication
    Xu, Chi
    Zhang, Hui
    Zhang, Ya
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2915 - 2920
  • [22] Multi-Agent Uncertainty Sharing for Cooperative Multi-Agent Reinforcement Learning
    Chen, Hao
    Yang, Guangkai
    Zhang, Junge
    Yin, Qiyue
    Huang, Kaiqi
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [23] Hierarchical multi-agent reinforcement learning
    Mohammad Ghavamzadeh
    Sridhar Mahadevan
    Rajbala Makar
    Autonomous Agents and Multi-Agent Systems, 2006, 13 : 197 - 229
  • [24] Learning to Share in Multi-Agent Reinforcement Learning
    Yi, Yuxuan
    Li, Ge
    Wang, Yaowei
    Lu, Zongqing
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [25] Multi-Agent Reinforcement Learning for Microgrids
    Dimeas, A. L.
    Hatziargyriou, N. D.
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [26] Hierarchical multi-agent reinforcement learning
    Ghavamzadeh, Mohammad
    Mahadevan, Sridhar
    Makar, Rajbala
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2006, 13 (02) : 197 - 229
  • [27] Multi-agent Exploration with Reinforcement Learning
    Sygkounas, Alkis
    Tsipianitis, Dimitris
    Nikolakopoulos, George
    Bechlioulis, Charalampos P.
    2022 30TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2022, : 630 - 635
  • [28] Partitioning in multi-agent reinforcement learning
    Sun, R
    Peterson, T
    FROM ANIMALS TO ANIMATS 6, 2000, : 325 - 332
  • [29] The Dynamics of Multi-Agent Reinforcement Learning
    Dickens, Luke
    Broda, Krysia
    Russo, Alessandra
    ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 367 - 372
  • [30] Multi-agent reinforcement learning: A survey
    Busoniu, Lucian
    Babuska, Robert
    De Schutter, Bart
    2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 1133 - +