Prosaposin is a biomarker of mesenchymal glioblastoma and regulates mesenchymal transition through the TGF-β1/Smad signaling pathway

被引:40
|
作者
Jiang, Yang [1 ,2 ]
Zhou, Jinpeng [1 ]
Hou, Dianqi [2 ]
Luo, Peng [1 ]
Gao, Huiling [3 ]
Ma, Yanju [4 ]
Chen, Yin-Sheng [5 ]
Li, Long [1 ]
Zou, Dan [7 ]
Zhang, Haiying [6 ]
Zhang, Ye [7 ]
Jing, Zhitao [1 ]
机构
[1] China Med Univ, Dept Neurosurg, Hosp 1, 155 North Nanjing St, Shenyang 110001, Liaoning, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Gen Hosp, Dept Neurosurg, Sch Med, Shanghai, Peoples R China
[3] Northeastern Univ, Coll Life & Hlth Sci, Shenyang, Liaoning, Peoples R China
[4] China Med Univ, Canc Hosp, Dept Med Oncol, Shenyang, Liaoning, Peoples R China
[5] SunYat Sen Univ, Canc Ctr, Collaborat Innovat Ctr Canc Med, State Key Lab Oncol South China,Dept Neurosurg Ne, Guangzhou, Guangdong, Peoples R China
[6] Liaoning Univ Tradit Chinese Med, Int Educ Coll, Shenyang, Liaoning, Peoples R China
[7] China Med Univ, Hosp 1, Inst Canc, Lab 1, 155 North Nanjing St, Shenyang 110001, Liaoning, Peoples R China
来源
JOURNAL OF PATHOLOGY | 2019年 / 249卷 / 01期
基金
中国国家自然科学基金;
关键词
PSAP; glioblastoma; mesenchymal subtype; invasion; EMT; GLIOMA STEM-CELLS; DIFFERENTIATION; RESISTANCE; EXPRESSION; GENE; EMT; PROLIFERATION; TEMOZOLOMIDE; METASTASIS; SECRETION;
D O I
10.1002/path.5278
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Mesenchymal glioblastoma (GBM) is the most aggressive subtype of GBM. Our previous study found that neurotrophic factor prosaposin (PSAP) is highly expressed and secreted in glioma and can promote the growth of glioma. The role of PSAP in mesenchymal GBM is still unclear. In this study, bioinformatic analysis, western blotting and RT-qPCR were used to detect the expression of PSAP in different GBM subtypes. Human glioma cell lines and patient-derived glioma stem cells were studied in vitro and in vivo, revealing that mesenchymal GBM expressed and secreted the highest level of PSAP among four subtypes of GBM, and PSAP could promote GBM invasion and epithelial-mesenchymal transition (EMT)-like processes in vivo and in vitro. Bioinformatic analysis and western blotting showed that PSAP mainly played a regulatory role in GBM invasion and EMT-like processes via the TGF-beta 1/Smad signaling pathway. In conclusion, the overexpression and secretion of PSAP may be an important factor causing the high invasiveness of mesenchymal GBM. PSAP is therefore a potential target for the treatment of mesenchymal GBM. (c) 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd
引用
收藏
页码:26 / 38
页数:13
相关论文
共 50 条
  • [31] Paeonol Inhibits Pancreatic Cancer Cell Migration and Invasion Through the Inhibition of TGF-β1/Smad Signaling and Epithelial-Mesenchymal-Transition
    Cheng, Chien-Shan
    Chen, Jing-Xian
    Tang, Jian
    Geng, Ya-Wen
    Zheng, Lan
    Lv, Ling-Ling
    Chen, Lian-Yu
    Chen, Zhen
    [J]. CANCER MANAGEMENT AND RESEARCH, 2020, 12 : 641 - 651
  • [32] Paeoniflorin suppresses TGF-β mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway
    Ji, Yu
    Dou, Yan-nong
    Zhao, Qian-wen
    Zhang, Ji-zhou
    Yang, Yan
    Wang, Ting
    Xia, Yu-feng
    Dai, Yue
    Wei, Zhi-feng
    [J]. ACTA PHARMACOLOGICA SINICA, 2016, 37 (06) : 794 - 804
  • [33] Paeoniflorin suppresses TGF-β mediated epithelial-mesenchymal transition in pulmonary fibrosis through a Smad-dependent pathway
    Yu Ji
    Yan-nong Dou
    Qian-wen Zhao
    Ji-zhou Zhang
    Yan Yang
    Ting Wang
    Yu-feng Xia
    Yue Dai
    Zhi-feng Wei
    [J]. Acta Pharmacologica Sinica, 2016, 37 : 794 - 804
  • [34] microRNA-141 inhibits TGF-β1-induced epithelial-to-mesenchymal transition through inhibition of the TGF-β1/SMAD2 signalling pathway in endometriosis
    Wang, Sixue
    Zhang, Mengmeng
    Zhang, Tingting
    Deng, Juan
    Xia, Xiaomeng
    Fang, Xiaoling
    [J]. ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2020, 301 (03) : 707 - 714
  • [35] microRNA-141 inhibits TGF-β1-induced epithelial-to-mesenchymal transition through inhibition of the TGF-β1/SMAD2 signalling pathway in endometriosis
    Sixue Wang
    Mengmeng Zhang
    Tingting Zhang
    Juan Deng
    Xiaomeng Xia
    Xiaoling Fang
    [J]. Archives of Gynecology and Obstetrics, 2020, 301 : 707 - 714
  • [36] TGF-β/SMAD signaling regulation of mesenchymal stem cells in adipocyte commitment
    Sheng-Nan Li
    Jia-Fa Wu
    [J]. Stem Cell Research & Therapy, 11
  • [37] TGF-β/SMAD signaling regulation of mesenchymal stem cells in adipocyte commitment
    Li, Sheng-Nan
    Wu, Jia-Fa
    [J]. STEM CELL RESEARCH & THERAPY, 2020, 11 (01)
  • [38] Oridonin prevents epithelial-mesenchymal transition and TGF-β1-induced epithelial-mesenchymal transition by inhibiting TGF-β1/Smad2/3 in osteosarcoma
    Sun, Yang
    Jiang, Xiubo
    Lu, Ying
    Zhu, Jianwei
    Yu, Lisha
    Ma, Bo
    Zhang, Qi
    [J]. CHEMICO-BIOLOGICAL INTERACTIONS, 2018, 296 : 57 - 64
  • [39] Loss of PPM1A expression enhances invasion and the epithelial-to-mesenchymal transition in bladder cancer by activating the TGF-β/Smad signaling pathway
    Geng, Jiang
    Fan, Jie
    Ouyang, Qi
    Zhang, Xiaopeng
    Zhang, Xiaolong
    Yu, Juan
    Xu, Zude
    Li, Qianyu
    Yao, Xudong
    Liu, Xiuping
    Zheng, Junhua
    [J]. ONCOTARGET, 2014, 5 (14) : 5700 - 5711
  • [40] Bleomycin (BLM) Induces Epithelial-to-Mesenchymal Transition in Cultured A549 Cells via the TGF-β/Smad Signaling Pathway
    Chen, Kui-Jun
    Li, Qing
    Wen, Cang-mei
    Duan, Zhao-Xia
    Zhang, Jie Yuan
    Xu, Chuan
    Wang, Jian-Min
    [J]. JOURNAL OF CANCER, 2016, 7 (11): : 1557 - 1564