NONPARAMETRIC INFERENCE FOR MARKOV PROCESSES WITH MISSING ABSORBING STATE

被引:12
|
作者
Bakoyannis, Giorgos [1 ,2 ]
Zhang, Ying [1 ,2 ]
Yiannoutsos, Constantin T. [1 ,2 ]
机构
[1] Indiana Univ, Bloomington, IN 47405 USA
[2] 410 West 10th St,Suite 3000, Indianapolis, IN 46202 USA
基金
美国国家卫生研究院;
关键词
Aalen-Johansen estimator; competing risks; cumulative incidence function; double-sampling; finite state space; missing cause of failure; pseudolikelihood; MULTIPLE IMPUTATION METHODS; CONFIDENCE BANDS; MODEL;
D O I
10.5705/ss.202017.0175
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study examines nonparametric estimations of a transition probability matrix of a nonhomogeneous Markov process with a finite state space and a partially observed absorbing state. We impose a missing-at-random assumption and propose a computationally efficient nonparametric maximum pseudolikelihood estimator (NPMPLE). The estimator depends on a parametric model that is used to estimate the probability of each absorbing state for the missing observations based, potentially, on auxiliary data. For the latter model, we propose a formal goodness-of-fit test based on a residual process. Using modern empirical process theory, we show that the estimator is uniformly consistent and converges weakly to a tight mean-zero Gaussian random field. We also provide a methodology for constructing simultaneous confidence bands. Simulation studies show that the NPMPLE works well with small sample sizes and that it is robust against some degree of misspecification of the parametric model for the missing absorbing states. The method is illustrated using HIV data from sub-Saharan Africa to estimate the transition probabilities of death and disengagement from HIV care.
引用
收藏
页码:2083 / 2104
页数:22
相关论文
共 50 条
  • [21] SOME PROBLEMS OF STATISTICAL INFERENCE IN ABSORBING MARKOV CHAINS
    BARTKO, JJ
    WATTERSON, GA
    BIOMETRIKA, 1965, 52 : 127 - +
  • [22] Nonparametric Inference on State Dependence in Unemployment
    Torgovitsky, Alexander
    ECONOMETRICA, 2019, 87 (05) : 1475 - 1505
  • [23] Imprecise Markov Chains with an Absorbing State
    Crossman, Richard J.
    Coolen-Schrijner, Pauline
    Skulj, Damjan
    Coolen, Frank P. A.
    ISIPTA '09: PROCEEDINGS OF THE SIXTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS, 2009, : 119 - +
  • [24] Nonparametric estimation and inference on conditional quantile processes
    Qu, Zhongjun
    Yoon, Jungmo
    JOURNAL OF ECONOMETRICS, 2015, 185 (01) : 1 - 19
  • [25] Bayesian nonparametric inference for mixed Poisson processes
    Gutiérrez-Peña, E
    Nieto-Barajas, LE
    BAYESIAN STATISTICS 7, 2003, : 163 - 179
  • [26] SIMPLE NONPARAMETRIC-INFERENCE FOR MONOTONIC PROCESSES
    SCHEMPER, M
    BIOMETRICAL JOURNAL, 1991, 33 (04) : 387 - 392
  • [27] Nonparametric inference for discretely sampled Levy processes
    Gugushvili, Shota
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (01): : 282 - 307
  • [28] Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data
    Faes, C.
    Ormerod, J. T.
    Wand, M. P.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (495) : 959 - 971
  • [29] ASYMPTOTIC INFERENCE IN MARKOV-PROCESSES
    ROUSSAS, GG
    ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (03): : 978 - 992
  • [30] Some limit theorems for absorbing Markov processes
    Chen, Jinwen
    Li, Haitao
    Jian, Siqi
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (34)