Minimax regret and strategic uncertainty

被引:34
|
作者
Renou, Ludovic [1 ]
Schlag, Karl H. [2 ]
机构
[1] Univ Leicester, Dept Econ, Leicester LE1 7RH, Leics, England
[2] Univ Pompeu Fabra, Dept Econ & Business, Barcelona, Spain
关键词
Minimax regret; Rationality; Conjectures; Price dispersion; Auction; EQUILIBRIUM; EXISTENCE; AVERSION; BELIEFS; CHOICE; GAMES;
D O I
10.1016/j.jet.2009.07.005
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper introduces a new solution concept, a minimax regret equilibrium, which allows for the possibility that players are uncertain about the rationality and conjectures of their opponents. We provide several applications of our concept. In particular, we consider price-setting environments and show that optimal pricing policy follows a non-degenerate distribution. The induced price dispersion is consistent with experimental and empirical observations (Baye and Morgan (2004) [4]). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:264 / 286
页数:23
相关论文
共 50 条
  • [41] Weighted sets of probabilities and minimax weighted expected regret: a new approach for representing uncertainty and making decisions
    Joseph Y. Halpern
    Samantha Leung
    Theory and Decision, 2015, 79 : 415 - 450
  • [42] Minimax regret classifier for imprecise class distributions
    Alaiz-Rodríguez, Rocío
    Guerrero-Curieses, Alicia
    Cid-Sueiro, Jesús
    Journal of Machine Learning Research, 2007, 8 : 103 - 130
  • [43] On the Minimax Regret for Online Learning with Feedback Graphs
    Eldowa, Khaled
    Esposito, Emmanuel
    Cesari, Tommaso
    Cesa-Bianchi, Nicolo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [44] DO PEOPLE VOTE ON THE BASIS OF MINIMAX REGRET
    BLAIS, A
    YOUNG, R
    FLEURY, C
    LAPP, M
    POLITICAL RESEARCH QUARTERLY, 1995, 48 (04) : 827 - 836
  • [45] On minimax-regret Huff location models
    Bello, Lenys
    Blanquero, Rafael
    Carrizosa, Emilio
    COMPUTERS & OPERATIONS RESEARCH, 2011, 38 (01) : 90 - 97
  • [46] Asymptotically Minimax Regret for Models with Hidden Variables
    Takeuchi, Jun'ichi
    Barron, Andrew R.
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 3037 - 3041
  • [47] Minimax regret classifier for imprecise class distributions
    Alaiz-Rodriguez, Rocio
    Guerrero-Curieses, Alicia
    Cid-Sueiro, Jesus
    JOURNAL OF MACHINE LEARNING RESEARCH, 2007, 8 : 103 - 130
  • [48] Minimax regret treatment choice with finite samples
    Stoye, Joerg
    JOURNAL OF ECONOMETRICS, 2009, 151 (01) : 70 - 81
  • [49] Minimax Regret Robust Screening with Moment Information
    Wang, Shixin
    Liu, Shaoxuan
    Zhang, Jiawei
    M&SOM-MANUFACTURING & SERVICE OPERATIONS MANAGEMENT, 2024, 26 (03) : 992 - 1012
  • [50] Minimax regret portfolios for restricted stock sequences
    Cover, TM
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 140 - 140