Note on Fourier-Laplace transform and analytic wave front set in theory of tempered ultrahyperfunctions

被引:5
|
作者
Franco, Daniel H. T.
Renoldi, Luiz H.
机构
[1] Ctr Estudios Fis Teor, Setor Fis Matemat, BR-30130131 Belo Horizonte, MG, Brazil
[2] Univ Fed Sao Joao Rey, Dept Fis, DCNAT, BR-36300000 Sao Joao Del Rei, MG, Brazil
关键词
tempered ultrahyperfunctions; Fourier-Laplace transform; wave front set;
D O I
10.1016/j.jmaa.2006.01.082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the Fourier-Laplace transform of tempered ultrahyperfunctions introduced by Sebastiao a Silva and Hasumi. We establish a generalization of Paley-Wiener-Schwartz theorem for this setting. This theorem is interesting in connection with the microlocal analysis. For this reason, the paper also contains a description of the singularity, structure of tempered ultrahyperfunctions in terms of the concept of analytic wave front set. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:819 / 829
页数:11
相关论文
共 50 条
  • [31] DYNAMIC ANALYSIS OF FUNCTIONALLY GRADED PIEZOELECTRIC MATERIAL BEAM USING THE HYBRID FOURIER-LAPLACE TRANSFORM METHOD
    Doroushi, A.
    Akbarzadeh, A. H.
    Eslami, M. R.
    PROCEEDINGS OF THE ASME 10TH BIENNIAL CONFERENCE ON ENGINEERING SYSTEMS DESIGN AND ANALYSIS, 2010, VOL 1, 2010, : 475 - 483
  • [32] Dynamic analysis of functionally graded plates using the hybrid Fourier-Laplace transform under thermomechanical loading
    A. H. Akbarzadeh
    M. Abbasi
    S. K. Hosseini zad
    M. R. Eslami
    Meccanica, 2011, 46 : 1373 - 1392
  • [33] Analytic theory for the quadratic scattering wave front set and application to the Schrodinger equation - Introduction
    Robbiano, L
    Zuily, C
    ASTERISQUE, 2002, (283) : 1 - +
  • [34] REMARK ON CHARACTERIZATION OF WAVE FRONT SET BY WAVE PACKET TRANSFORM
    Kato, Keiichi
    Kobayashi, Masaharu
    Ito, Shingo
    OSAKA JOURNAL OF MATHEMATICS, 2017, 54 (02) : 209 - 228
  • [35] Analytic wave front set for solutions to Schrodinger equations
    Martinez, Andre
    Nakamura, Shu
    Sordoni, Vania
    ADVANCES IN MATHEMATICS, 2009, 222 (04) : 1277 - 1307
  • [36] PCT, spin and statistics, and analytic wave front set
    M. A. Soloviev
    Theoretical and Mathematical Physics, 1999, 121 : 1377 - 1396
  • [37] PCT, spin and statistics, and analytic wave front set
    Soloviev, MA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 121 (01) : 1377 - 1396
  • [38] Wave front set defined by wave packet transform and its application
    Kato, Keiichi
    Kobayashi, Masaharu
    Ito, Shingo
    NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 : 417 - 425
  • [39] The Further Study about the Conversion Theory from the Unilateral Laplace Transform to the Fourier Transform
    Chu, Yanzheng
    Zhou, Wei
    Bai, Jianming
    2008 WORLD AUTOMATION CONGRESS PROCEEDINGS, VOLS 1-3, 2008, : 1761 - +
  • [40] The Global Wave Front Set of Tempered Oscillatory Integrals with Inhomogeneous Phase Functions
    Coriasco, S.
    Schulz, R.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (05) : 1093 - 1121