Relative entropy and catalytic relative majorization

被引:20
|
作者
Rethinasamy, Soorya [1 ,2 ,3 ]
Wilde, Mark M. [2 ,3 ,4 ]
机构
[1] Birla Inst Technol & Sci, Pilani 333031, Rajasthan, India
[2] Louisiana State Univ, Hearne Inst Theoret Phys, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[4] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 03期
关键词
ENTANGLEMENT;
D O I
10.1103/PhysRevResearch.2.033455
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Given two pairs of quantum states, a fundamental question in the resource theory of asymmetric distinguishability is whether there exists a quantum channel converting one pair to the other. In this work, we reframe this question in such a way that a catalyst can be used to help perform the transformation, with the only constraint on the catalyst being that its reduced state is returned unchanged, so that it can be used again to assist a future transformation. What we find here, for the special case in which the states in a given pair are commuting, and thus quasiclassical, is that this catalytic transformation can be performed if and only if the relative entropy of one pair of states is larger than that of the other pair. This result endows the relative entropy with a fundamental operational meaning that goes beyond its traditional interpretation in the setting of independent and identical resources. Our finding thus has an immediate application and interpretation in the resource theory of asymmetric distinguishability, and we expect it to find application in other domains.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Continuity of relative entropy of entanglement
    Donald, MJ
    Horodecki, M
    PHYSICS LETTERS A, 1999, 264 (04) : 257 - 260
  • [32] Relative entropy and atomic structure
    Sagar, Robin P.
    Guevara, Nicolais L.
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2008, 857 (1-3): : 72 - 77
  • [33] THEORY OF MINIMUM RELATIVE ENTROPY
    SHORE, JE
    GEOPHYSICS, 1986, 51 (02) : 506 - 506
  • [34] Relative Entropy Close to the Edge
    Stefan Hollands
    Annales Henri Poincaré, 2019, 20 : 2353 - 2375
  • [35] Relative Entropy and Squashed Entanglement
    Ke Li
    Andreas Winter
    Communications in Mathematical Physics, 2014, 326 : 63 - 80
  • [36] Relative Renyi Entropy for Atoms
    Nagy, A.
    Romera, E.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2009, 109 (11) : 2490 - 2494
  • [37] Fluctuations and relative Boltzmann entropy
    Eu, BC
    JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (06): : 2388 - 2399
  • [38] Relative Entropy Close to the Edge
    Hollands, Stefan
    ANNALES HENRI POINCARE, 2019, 20 (07): : 2353 - 2375
  • [39] Monotonicity of a relative Renyi entropy
    Frank, Rupert L.
    Lieb, Elliott H.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (12)
  • [40] Relative entropy and torsion coupling
    Ning, Bo
    Lin, Feng-Li
    PHYSICAL REVIEW D, 2016, 94 (12)