On Computing of arbitrary positive integer powers for one type of anti-tridiagonal matrices of even order

被引:0
|
作者
Qin, Mei [1 ]
Liu, Cancan [1 ]
Wang, Weixin
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai, Peoples R China
关键词
eigenvalues and eigenvectors; Chebyshev polynomials; bisymmetric matrix theory; anti-tridiagonal matrices; NEIGHBORING DIAGONALS; PRINCIPAL;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the [1-5] papers, Q.Yin, J.Rimas, Honglin Wu, etc, published some papers on computing of arbitrary positive integer powers for sparse matrices. In this new paper, we will derive the explicit expression of arbitrary positive integer powers for another type of symmetric anti-tridiagonal matrices of even order. This new paper will use the method of combining Chebyshev polynomials with bisymmetric matrix theory to get the explicit expression.
引用
收藏
页码:107 / 110
页数:4
相关论文
共 50 条