Oxygen vacancy enhancing CO2 electrochemical reduction to CO on Ce-doped ZnO catalysts

被引:59
|
作者
Ren, Xixi [1 ]
Gao, Yugang [1 ]
Zheng, Liren [1 ]
Wang, Zeyan [1 ]
Wang, Peng [1 ]
Zheng, Zhaoke [1 ]
Liu, Yuanyuan [1 ]
Cheng, Hefeng [1 ]
Dai, Ying [2 ]
Huang, Baibiao [1 ]
机构
[1] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[2] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
CexZn1-xO; Electrocatalytic CO2 reduction (CO2RR); Oxygen vacancy; CO2; adsorption; activation; ELECTROCATALYTIC REDUCTION; CARBON-DIOXIDE; EFFICIENT; ELECTROREDUCTION; CONVERSION; CU;
D O I
10.1016/j.surfin.2020.100923
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oxygen vacancy defect engineering is currently an effective strategy to enhance the performance of electrocatalytic CO2 reduction to CO. In our work, ZnO with oxygen vacancies defects by Ce3+ doping were obtained through solvothermal method. The oxygen vacancies defects concentration could be controlled by varying the Ce3+ dopant concentration, which initially increased then decreased. And the CO2ER performance of as-prepared samples is found to be closely dependent with the concentration of oxygen vacancy in the as-prepared CexZn1-xO. The optimized CO2ER to CO performances can be obtained from Ce0.016Zn0.984O with the highest oxygen vacancy concentrations, which exhibited the highest performance (current density 24 mA cm(-2) and Faradaic efficiency 88% for CO) at -1.0 V versus RHE. Through CO2 isotherm adsorption curve and CO2 temperature-programmed desorption (CO2-TPD) test, it was proved that the high concentration oxygen vacancy of Ce0.016Zn0.984O was beneficial to improve the CO2 adsorption and activation. This study proposes a strategy aimed at obtaining a high-performance catalyst for electrocatalytic CO2 reduction by adjusting the concentration of oxygen vacancies.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Oxygen vacancies enriched Bi based catalysts for enhancing electrocatalytic CO2 reduction to formate
    Zhao, Xiu-Hui
    Chen, Qing-Song
    Zhuo, De-Huang
    Lu, Jian
    Xu, Zhong-Ning
    Wang, Chong-Min
    Tang, Jing-Xiao
    Sun, Shi-Gang
    Guo, Guo-Cong
    ELECTROCHIMICA ACTA, 2021, 367 (367)
  • [32] Role of oxygen vacancy in metal oxides for photocatalytic CO2 reduction
    Jiang, Wenbin
    Loh, Hongyi
    Low, Beverly Qian Ling
    Zhu, Houjuan
    Low, Jingxiang
    Heng, Jerry Zhi Xiong
    Tang, Karen Yuanting
    Li, Zibiao
    Loh, Xian Jun
    Ye, Enyi
    Xiong, Yujie
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 321
  • [33] Controlling the O-Vacancy Formation and Performance of Au/ZnO Catalysts in CO2 Reduction to Methanol by the ZnO Particle Size
    Chen, Shilong
    Abdel-Mageed, Ali M.
    Mochizuki, Chihiro
    Ishida, Tamao
    Murayama, Toru
    Rabeah, Jabor
    Parlinska-Wojtan, Magdalena
    Brueckner, Angelika
    Behm, R. Juergen
    ACS CATALYSIS, 2021, 11 (15): : 9022 - 9033
  • [34] Electrochemical Reduction of CO2 to HCOOH over Copper Catalysts
    Hu, Weibo
    Li, Jiejie
    Ma, Lushan
    Su, Wanyu
    Zhu, Yanping
    Li, Wenhao
    Chen, Yubin
    Zou, Liangliang
    Zou, Zhiqing
    Yang, Bo
    Wen, Ke
    Yang, Hui
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (48) : 57462 - 57469
  • [35] Organic, Organometallic and Bioorganic Catalysts for Electrochemical Reduction of CO2
    Apaydin, Dogukan Hazar
    Schlager, Stefanie
    Portenkirchner, Engelbert
    Sariciftci, Niyazi Serdar
    CHEMPHYSCHEM, 2017, 18 (22) : 3094 - 3116
  • [36] Restructuring and integrity of molecular catalysts in electrochemical CO2 reduction
    Rooney, Conor L.
    Wu, Yueshen
    Gallagher, David J.
    Wang, Hailiang
    NATURAL SCIENCES, 2022, 2 (04):
  • [37] Electrochemical catalysis of CO2 reduction on copper nanocrystal catalysts
    He, Yang
    Wu, Nianqiang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [38] Advances in Sn?Based Catalysts for Electrochemical CO2 Reduction
    Shulin Zhao
    Sheng Li
    Tao Guo
    Shuaishuai Zhang
    Jing Wang
    Yuping Wu
    Yuhui Chen
    Nano-Micro Letters, 2019, (04) : 114 - 132
  • [39] Carbon-based catalysts for electrochemical CO2 reduction
    Jia, Chen
    Dastafkan, Kamran
    Ren, Wenhao
    Yang, Wanfeng
    Zhao, Chuan
    SUSTAINABLE ENERGY & FUELS, 2019, 3 (11): : 2890 - 2906
  • [40] Heterogeneous catalysts for highly efficient electrochemical reduction of CO2
    Wang, Mingkui
    Jiang, Xingxing
    Wang, Xikui
    Shen, Yan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258