Space from Hilbert space: Recovering geometry from bulk entanglement

被引:104
|
作者
Cao, ChunJun [1 ]
Carroll, Sean M. [1 ]
Michalakis, Spyridon [1 ,2 ]
机构
[1] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
关键词
ENTROPY; GAP;
D O I
10.1103/PhysRevD.95.024031
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We examine how to construct a spatial manifold and its geometry from the entanglement structure of an abstract quantum state in Hilbert space. Given a decomposition of Hilbert space H into a tensor product of factors, we consider a class of "redundancy-constrained states" in H that generalize the area-law behavior for entanglement entropy usually found in condensed-matter systems with gapped local Hamiltonians. Using mutual information to define a distance measure on the graph, we employ classical multidimensional scaling to extract the best-fit spatial dimensionality of the emergent geometry. We then show that entanglement perturbations on such emergent geometries naturally give rise to local modifications of spatial curvature which obey a (spatial) analog of Einstein's equation. The Hilbert space corresponding to a region of flat space is finite-dimensional and scales as the volume, though the entropy (and the maximum change thereof) scales like the area of the boundary. Aversion of the ER = EPR conjecture is recovered, in that perturbations that entangle distant parts of the emergent geometry generate a configuration that may be considered as a highly quantum wormhole.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Entanglement and Hilbert space geometry for systems with a few qubits
    Mosseri, Remy
    Ribeiro, Pedro
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2007, 17 (06) : 1117 - 1132
  • [2] Hilbert space fragmentation from lattice geometry
    Harkema, Pieter H.
    Iversen, Michael
    Nielsen, Anne E. B.
    PHYSICAL REVIEW A, 2024, 110 (02)
  • [3] From noncommutative phase space to hilbert space
    Muthukumar, B.
    THEORETICAL HIGH ENERGY PHYSICS, 2007, 939 : 359 - 362
  • [4] MEASURES OF ENTANGLEMENT - A HILBERT SPACE APPROACH
    Majewski, Wiadysiaw A.
    QUANTUM BIO-INFORMATICS II: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2009, 24 : 127 - 138
  • [5] Transverse entanglement migration in Hilbert space
    Chan, K. W.
    Torres, J. P.
    Eberly, J. H.
    PHYSICAL REVIEW A, 2007, 75 (05):
  • [6] SpaceTime from Hilbert Space: Decompositions of Hilbert Space as Instances of Time
    Noorbala, Mahdiyar
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2018, 66 (02):
  • [7] Bulk geometry from entanglement entropy of CFT
    Saha, Ashis
    Karar, Sourav
    Gangopadhyay, Sunandan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (02):
  • [8] Bulk geometry from entanglement entropy of CFT
    Ashis Saha
    Sourav Karar
    Sunandan Gangopadhyay
    The European Physical Journal Plus, 135
  • [9] LAGRANGE MULTIPLIERS AND THE GEOMETRY OF HILBERT SPACE
    BUTLER, T
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1964, 12 (04): : 781 - 793
  • [10] Geometry of quantum state space and entanglement
    Prasenjit Deb
    Pratapaditya Bej
    Quantum Information Processing, 2019, 18