Projected Predictor-Corrector Method for Lattice Physics Burnup Calculations

被引:18
|
作者
Yamamoto, Akio [1 ]
Tatsumi, Masahiro [2 ]
Sugimura, Naoki [3 ]
机构
[1] Nagoya Univ, Dept Mat Phys & Energy Engn, Chikusa Ku, Nagoya, Aichi 4648603, Japan
[2] Nucl Fuel Ind Ltd, Kumatori, Osaka 5900481, Japan
[3] Nucl Engn Ltd, Nishi Ku, Osaka 5500001, Japan
关键词
CODE;
D O I
10.13182/NSE08-80
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A new burnup calculation method, called the projected predictor-corrector (PPC) method, is proposed. In comparison with the conventional predictor-corrector (PC) method, a larger time-step size can be used in burnup calculation without losing calculational accuracy. The PPC method is especially useful for Gd-bearing fuel assemblies, for which a fine time step size is necessary in burnup calculations. The PPC method utilizes a correlation between the number density and the reaction rate in each burnable nuclide and improves the accuracy of the microscopic reaction rate in the corrector step by estimating the "projected" reaction rate. The additional computation time for the PPC method is negligible. Verification calculations are performed for 17 x 17 pressurized water reactor fuel assemblies with 16 Gd-bearing fuel rods. The content of Gd in Gd-bearing fuel rods is set to be 2 to 10 wt%. The calculation results indicate that the PPC method shows comparable accuracy to conventional PC methods whose step time size is about half; i.e., the number of burnup steps in the PPC method can be reduced to about half of that in the conventional PC method.
引用
收藏
页码:144 / 151
页数:8
相关论文
共 50 条
  • [31] Parallel predictor-corrector methods
    vanderHouwen, PJ
    Sommeijer, BP
    deSwart, JJB
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 66 (1-2) : 53 - 71
  • [32] Validated predictor-corrector methods
    Rihm, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S825 - S826
  • [33] On interval predictor-corrector methods
    Andrzej Marciniak
    Malgorzata A. Jankowska
    Tomasz Hoffmann
    Numerical Algorithms, 2017, 75 : 777 - 808
  • [34] STABILITY OF PREDICTOR-CORRECTOR METHODS
    HALL, G
    COMPUTER JOURNAL, 1967, 9 (04): : 410 - &
  • [35] On interval predictor-corrector methods
    Marciniak, Andrzej
    Jankowska, Malgorzata A.
    Hoffmann, Tomasz
    NUMERICAL ALGORITHMS, 2017, 75 (03) : 777 - 808
  • [36] Predictor-corrector Obreshkov pairs
    Butcher, John C.
    Sehnalova, Pavla
    COMPUTING, 2013, 95 (05) : 355 - 371
  • [37] Using Efficient Predictor-Corrector Reaction Path Integrators for Studies Involving Projected Frequencies
    Hratchian, Hrant P.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (12) : 5013 - 5019
  • [38] A STARTING METHOD FOR THE 3-POINT ADAMS PREDICTOR-CORRECTOR METHOD
    ALONSO, R
    JOURNAL OF THE ACM, 1960, 7 (02) : 176 - 180
  • [39] Numerical solution of fuzzy differential equations by predictor-corrector method
    Allahviranloo, T.
    Ahmady, N.
    Ahmady, E.
    INFORMATION SCIENCES, 2007, 177 (07) : 1633 - 1647
  • [40] Adams predictor-corrector method for solving uncertain differential equation
    Gu, Yajing
    Zhu, Yuanguo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (02):